Differential Cryptanalysis of FEAL4 Using Evolutionary Algorithm

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9876)


This paper presents a differential cryptanalysis attack on the Fast Data Encipherment Algorithm (FEAL4) reduced to four rounds, using an Evolutionary Algorithm (EA). The main purpose of the developed attack is to find six subkeys of the encryption algorithm, which will be used to decipher the captured ciphertext. Furthermore, an additional heuristic negation operator was introduced to improve local search of EA. The algorithm is based on a chosen-plaintext attack. In order to improve an effectiveness, the attack uses the differential cryptanalysis techniques. The results of the developed algorithm were compared against a corresponding Hill Climbing (HC), Simple Evolutionary Algorithm (SEA) and Brute Force (BF) attacks.


Differential cryptanalysis Evolutionary algorithm FEAL4 Cryptography Hill climbing 


  1. 1.
    Kenan, K.: Cryptography in the Databases. The Last Line of Defense. Addison Wesley Publishing Company, New York (2005)Google Scholar
  2. 2.
    Stallings, W.: Cryptography and Network Security: Principles and Practice, 5th edn. Pearson, New York (2011)Google Scholar
  3. 3.
    Stinson, D.R.: Cryptography: Theory and Practice. CRC Press Inc., Boca Raton (1995)MATHGoogle Scholar
  4. 4.
    Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. CRC Press Inc., Boca Raton (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Boryczka, U., Dworak, K.: Genetic transformation techniques in cryptanalysis. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS, vol. 8398, pp. 147–156. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Song, J., Zhang, H., Meng, Q., Wang, Z.: Cryptanalysis of four-round DES based on genetic algorithm. In: Proceedings of IEEE International Conference on Wireless Communications, Network and Mobile Computing, pp. 2326–2329. IEEE (2007)Google Scholar
  7. 7.
    Bhasin, H., Hameed, K.A.: Cryptanalysis using soft computing techniques. J. Comput. Sci. Appl. 3(2), 52–55 (2015)Google Scholar
  8. 8.
    Garg, P., Varshney, S., Bhardwaj, M.: Cryptanalysis of simplified data encryption standard using genetic algorithm. Am. J. Net. Comm. 4, 32–36 (2015)CrossRefGoogle Scholar
  9. 9.
    Dworak, K., Boryczka, U.: Cryptanalysis of SDES using modified version of binary particle swarm optimization. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawinski, B. (eds.) ICCCI 2015. LNCS, vol. 9330, pp. 159–168. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24306-1_16 CrossRefGoogle Scholar
  10. 10.
    Abd-Elmonim, W.G., Ghali, N.I., Hassanien, A.E., Abraham, A.: Known-plaintext attack of DES-16 using particle swarm optimization. In: Proceedings of Third World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 12–16. IEEE (2011)Google Scholar
  11. 11.
    Russell, M., Clark, J.A., Stepney, S.: Using ants to attack a classical cipher. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 146–147. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Mekhaznia, T., Menai, M.E.B.: Cryptanalysis of classical ciphers with ant algorithms. Int. J. Metaheuristics 3, 175–198 (2014)CrossRefGoogle Scholar
  13. 13.
    Garg, P.: Genetic algorithms, tabu search and simulated annealing: a comparasion between three approached for the cryptanalysis of transposition cipher. IJNSA 1(1), 34–52 (2009)Google Scholar
  14. 14.
    Dewu, X., Wei, C.: A survey on cryptanalysis of block ciphers. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), vol. 8, pp. 218–220 (2010)Google Scholar
  15. 15.
    Laskari, E.C., Meletiou, G.C., Stamatiou, Y.C., Vrahatis, M.N.: Evolutionary computation based cryptanalysis: a first study. Nonlinear Anal. 63, e823–e830 (2005)CrossRefMATHGoogle Scholar
  16. 16.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, London (1996)CrossRefMATHGoogle Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley Longman Publishing, Boston (1989)MATHGoogle Scholar
  18. 18.
    Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  19. 19.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, New York (1996)MATHGoogle Scholar
  20. 20.
    Stamp, M., Low, R.M.: Applied Cryptanalysis. Breaking Ciphers in the Real World. Wiley, New York (2007)CrossRefGoogle Scholar
  21. 21.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4(1), 3–72 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of SilesiaSosnowiecPoland
  2. 2.Future ProcessingGliwicePoland

Personalised recommendations