An Asymmetric Approach to Discover the Complex Matching Between Ontologies

  • Fatma KaabiEmail author
  • Faiez Gargouri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


This paper introduces an extensional and asymmetric alignment approach capable of identifying complex mappings between OWL ontologies. This approach employ the association rule to detect implicative and conjunctive mapping containing complex correspondences. Method for extracting the complex mappings is presented and results of experiments carried out on the large biomedical ontologies and the anatomy track available to Test library of Ontology Alignment Evaluation Initiative show the efficiency of the approach proposed.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: The Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)Google Scholar
  2. 2.
    Blanchard, J., Kuntz, P., Guillet, F., Gras, R.: Implication intensity: from the basic statistical definition to the entropic version, chap. 28, pp. 473–485. CRC Press (2003)Google Scholar
  3. 3.
    Do, H., Rahm, E.: A system for flexible combination of schema matching approaches. In: The International Conference on Very Large Data Bases (VLDB 2002), pp. 610–621 (2002)Google Scholar
  4. 4.
    Kaâbi, F., Gargouri, F.: An approach to find complex matching between conceptual hierarchies. In: Proceedings of the 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2012), pp. 205–210. IEEE Computer Society, Washington, DC (2012)Google Scholar
  5. 5.
    Kaabi, F., Gargouri, F.: A new approach to discover the complex mappings between ontologies. Int. J. Web Sci. 1(3) (2012)Google Scholar
  6. 6.
    Gracia, J., Asooja, K.: Monolingual, cross-lingual ontology matching with CIDER-CL: evaluation report for OAEI 2013. In: Proceedings of the 8th International Conference on Ontology Matching, vol. 1111, pp. 109–116. (2013)Google Scholar
  7. 7.
    Nago, D.D., Bellehsene, Z.: YAM++: a multi-strategy based approach for ontology matching task. In: Proceedings of the 8th International Conference on Ontology Matching, OM 2013, vol. 1111, pp. 211–218. (2013)Google Scholar
  8. 8.
    Jiménez-Ruiz, E., Grau, B.C., Solimando, A., Cross, V.V.: LogMap family results for OAEI 2015. In: Proceedings of the 10th International Workshop on Ontology Matching collocated with the 14th International Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, 12 October 2015, pp. 171–175 (2015)Google Scholar
  9. 9.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl. Eng. Rev. 18(1), 1–31 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  11. 11.
    David, J., Guillet, F., Briand, H.: Association rule ontology matching approach. Int. J. Semant. Web Inf. Syst. 3(2), 27–49 (2007)CrossRefGoogle Scholar
  12. 12.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match ontologies on the semantic web. VLDB J. 12(4), 303–319 (2003)CrossRefGoogle Scholar
  13. 13.
    Stuckenschmidt, H., Preu, L., Meilicke, C.: Learning complex ontology alignments a challenge for ILP research. In: Proceedings of the 18th International Conference on Inductive Logic Programming (2008)Google Scholar
  14. 14.
    Qin, H., Dou, D., LePendu, P.: Discovering executable semantic mappings between ontologies. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 832–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Ritze, D., Meilicke, C., Zamazal, O.S., Enschmidt, H.S.: A pattern-based ontology matching approach for detecting complex correspondences. In: Proceedings of the ISWC 2009 Workshop on Ontology Matching (2009)Google Scholar
  16. 16.
    Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad (IN), pp. 348–353. AAAI Press, Menlo Park (CAUS) (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory MIRACL, Faculty of Economic Sciences and ManagementSfaxTunisia
  2. 2.Laboratory MIRACL, The Higher Institute of Computer Science and Multimedia of SfaxSfaxTunisia

Personalised recommendations