Skip to main content

Some Remarks on the Mean-Based Prioritization Methods in AHP

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9875))

Included in the following conference series:

Abstract

EVM (eigenvector method) and GMM (geometric mean method) are probably the two most popular priority deriving techniques for AHP (Analytic Hierarchy Process). Although much has already been discussed about these methods, one frequently repeated question is: what do they have in common? In this paper we show that both these methods can be constructed based on the same principle that the priority of one alternative should correspond to the weighted mean of priorities of other alternatives. We also show how the accepted principle can be used to construct priority deriving methods for the generalized (non-reciprocal) pairwise comparisons matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The vector associated with the principal eigenvalue (spectral radius) of A.

  2. 2.

    Note that accepting \(w(c_{n})=1\), due to (7), we immediately get a solution of (11) in the form \([a_{1n},a_{2n},\ldots ,a_{n-1,n},1]\).

  3. 3.

    It is enough to notice that:

    $$ \frac{w_{r}}{w_{k}}=\frac{\left( \prod _{j=1}^{n}a_{rj}\right) ^{\frac{1}{n}}}{\left( \prod _{j=1}^{n}a_{kj}\right) ^{\frac{1}{n}}}=\left( \prod _{j=1}^{n}\frac{a_{rj}}{a_{kj}}\right) ^{\frac{1}{n}}=\left( \prod _{j=1}^{n}a_{rj}a_{jr}a_{rk}\right) ^{\frac{1}{n}}=\left( \prod _{j=1}^{n}a_{rk}\right) ^{\frac{1}{n}}=a_{rk} $$

    for every \(k,r=1,\ldots ,n\).

References

  1. Bana e Costa, C.A., Vansnick, J.: A critical analysis of the eigenvalue method used to derive priorities in AHP. Eur. J. Oper. Res. 187(3), 1422–1428 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bozóki, S., Fülöp, J., Rónyai, L.: On optimal completion of incomplete pairwise comparison matrices. Math. Comput. Model. 52(1–2), 318–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunelli, M., Fedrizzi, M.: Axiomatic properties of inconsistency indices. J. Oper. Res. Soc. (2013)

    Google Scholar 

  4. Crawford, G.B.: The geometric mean procedure for estimating the scale of a judgement matrix. Math. Modell. 9, 327–334 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dyer, J.S.: Remarks on the analytic hierarchy process. Manage. Sci. 36(3), 249–258 (1990)

    Article  MathSciNet  Google Scholar 

  6. Fedrizzi, M., Brunelli, M.: On the priority vector associated with a reciprocal relation and a pairwise comparison matrix. J. Soft Comput. 14(6), 639–645 (2010)

    Article  MATH  Google Scholar 

  7. Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach to preference learning from pairwise comparisons in case of decision under uncertainty. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 584–594. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Ho, W.: Integrated analytic hierarchy process and its applications - a literature review. Eur. J. Oper. Res. 186(1), 18–18 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hovanov, N.V., Kolari, J.W., Sokolov, M.V.: Deriving weights from general pairwise comparison matrices. Math. Soc. Sci. 55(2), 205–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishizaka, A., Lusti, M.: How to derive priorities in AHP: a comparative study. Central Europ. J. Oper. Res. 14, 387–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Janicki, R., Zhai, Y.: On a pairwise comparison-based consistent non-numerical ranking. Logic J. IGPL 20(4), 667–676 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kahneman, D.: Thinking, Fast and Slow. New York, Farrar, Straus and Giroux (2011)

    Google Scholar 

  13. Koczkodaj, W.W., Szwarc, R.: On axiomatization of inconsistency indicators for pairwise comparisons. Fundamenta Informaticae 4(132), 485–500 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Kou, G., Lin, C.: A cosine maximization method for the priority vector derivation in AHP. Eur. J. Oper. Res. 235(1), 225–232 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kułakowski, K.: Heuristic rating estimation approach to the pairwise comparisons method. Fundamenta Informaticae 133, 367–386 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Kułakowski, K.: On the properties of the priority deriving procedure in the pairwise comparisons method. Fundamenta Informaticae 139(4), 403–419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kułakowski, K.: Notes on the existence of a solution in the pairwise comparisons method using the heuristic rating estimation approach. Ann. Math. Artif. Intell. 77(1), 105–121 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kułakowski, K., Grobler-Dȩbska, K., Wąs, J.: Heuristic rating estimation: geometric approach. J. Glob. Optim. 62(3), 529–543 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meyer, C.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, SIAM, Philadelphia (2000)

    Book  Google Scholar 

  20. Mikhailov, L.: Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets Syst. 134(3), 365–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perron, O.: Zur theorie der matrices. Math. Ann. 64(2), 248–263 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  22. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2000)

    MATH  Google Scholar 

  23. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, J.E., Winterfeldt, D.: Anniversary article: decision analysis in management science. Manage. Sci. 50(5), 561–574 (2004)

    Article  Google Scholar 

  25. Vaidya, O.S., Kumar, S.: Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169(1), 1–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Kułakowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kułakowski, K., Kȩdzior, A. (2016). Some Remarks on the Mean-Based Prioritization Methods in AHP. In: Nguyen, NT., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9875. Springer, Cham. https://doi.org/10.1007/978-3-319-45243-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45243-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45242-5

  • Online ISBN: 978-3-319-45243-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics