Skip to main content

Thermophiles and Psychrophiles in Nanotechnology

  • Chapter
  • First Online:

Abstract

Some thermophiles and psychrophiles have developed the ability to resort to specific defense mechanisms to quell stresses like toxicity of heavy metal ions or metals. Some of them could survive and grow even at high metal ion concentrations and are capable of binding large quantities of metallic cations. Moreover, some of these microorganisms are able to synthesize nanoparticles. The remarkable ability of these group of microbes to reduce heavy metal ions make them one of the best candidates for nanoparticle synthesis. In this chapter, thermophilic and psychrophilic microorganisms used in nanoparticle biosynthesis are presented. The aim of chapter is to make a reflection on the current state and future prospects and especially the possibilities and limitations of the use of extremophiles in bio-based technique for industries.

This is a preview of subscription content, log in via an institution.

References

  • Abad JM, Mertens SFL, Pita M, Fernandez VM, Schiffrin DJ (2005) Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc 127:5689–5694

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Ambler RP (1967) Enzymic hydrolysis with carboxypeptidases. Methods Enzymol 11:155–166

    Article  CAS  Google Scholar 

  • Andrade Â, Ferreira R, Fabris J, Domingues R (2011) Coating nanomagnetic particles for biomedical applications. Biomedical engineering-frontiers and challenges. In: Fazel-Rezai R (ed) InTech. Available from: http://www.intechopen.com/articles/show/title/coating-nanomagnetic-particles-for-biomedical-applications

    Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Bec N, Villa A, Tortora P, Mozhaev VV, Balny C, Lange R (1996) Enhanced stability of carboxypeptidase from Sulfolobus solfataricus at high pressure. Biotechnol Lett 18:483–488

    Article  CAS  Google Scholar 

  • Benaroudi N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  Google Scholar 

  • Bhattacharyya S, Agrawal DC (1995) Preparation of tetragonal ZrO2–Gd2O3 powders. J Mater Sci 30:1495–1499

    Article  CAS  Google Scholar 

  • Bhattacharyya T, Samaddar S, Dasgupta AK (2013) Reusable glucose sensing using carbon nanotubes based self-assembly. Nanoscale. 5:9231–9237

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya T, Roy S, Ray P, Dasgupta AK (2014) Induced chirality in single wall carbon nanotubes based self-assembly. J Mater Chem A 2:5759–5765

    Article  CAS  Google Scholar 

  • Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Elst LV, Muller R, Roux S, Perriat P, Tillement OJ (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. Am Chem Soc. 129:5076–5084

    Article  CAS  Google Scholar 

  • Caselli A, Dos Santos AM, Agusto MR (2004) Gases fumarólicos de la Isla Decepción (Shetland del Sur, Antártida): Vvariaciones químicas y depósitos vinculados a la crisis sísmica de 1999. Rev Asoc Geol Arg. 59:291–302

    Google Scholar 

  • Castro L, Blázquez ML, Muñoz JA, González FG, Ballester A (2014) Mechanism and Applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:1–18

    Article  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:319–343

    Article  CAS  Google Scholar 

  • Chen Z (1996) Effects of gadolinia and alumina Addition on the densification and toughening of silicon carbide. J Am Ceram Soc 79:530–532

    Article  CAS  Google Scholar 

  • Chen YH, Chi MC, Wang TF, Chen JC, Lin LL (2012) Preparation of magnetic nanoparticles and their use for immobilization of C-terminally lysine-tagged Bacillus sp. TS-23 α-amylase. Appl Biochem Biotechnol 166:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci USA 107:7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo S, D’Auria S, Fusi P, Zecca L, Raia CA, Tortora P (1992) Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 206:349–357

    Article  CAS  PubMed  Google Scholar 

  • Colombo S, Toietta G, Zecca L, Vanoni M, Tortora P (1995) Molecular cloning, nucleotide sequence and expression of a carboxypeptidase-encoding gene from the archaebacterium Sulfolobus solfataricus. J Bacteriol 177:5561–5565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island. Antarctica. Microb Cell Fact. 12:1–6

    Article  CAS  Google Scholar 

  • Correa-Llantén DN, Muñoz-Ibacache SA, Maire M, Blamey JM (2014) Enzyme involvement in the Biosynthesis of selenium nanoparticles by Geobacillus wiegelii strain GWE1 isolated from a drying oven. Int J Biol, Biomol Agric Food Biotechnol Eng. 8:637–641

    Google Scholar 

  • Crove JH, Crove IM (2000) Preservation of mammalian cells learning of nature tricks. Nat Biotechnol 18:145–147

    Article  CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  • Demirjiana DC, Morı́s-Varasa F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  Google Scholar 

  • Durán N, Marcato PD, Alves OL, Souza GD, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27

    Article  Google Scholar 

  • Emborg J, Dalgaard P, Ahrens P (2006) Morganella psychrotolerans sp. nov., a histamine producing bacterium isolated from various seafoods. Int J Syst Evol Microbiol 56:2473–2479

    Article  CAS  PubMed  Google Scholar 

  • Engle M, Youhong L, Carl W, Juergen W (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Bacteriol 45:454–461

    Article  CAS  PubMed  Google Scholar 

  • Erasmus M, Cason ED, van Marwijk J, Botes E, Gericke M, van Heerden E (2014) Gold nanoparticle synthesis using the thermophilic bacterium Thermus scotoductus SA-01 and the purification and characterization of its unusual gold reducing protein. Gold Bull. 47:245–253

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Coll Surf B. 74:123–126

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnol Biol Med 6:103–109

    Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2008) Enzyme function at low temperatures in Psychrophiles. In: Siddiqui KS, Thomas T (eds) Protein Adaptation in extremophiles. Nova Science Publishers, New York, New York, pp 35–69

    Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica. Article ID 512840, 28 p. http://dx.doi.org/10.1155/2013/512840

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Flenniken M, Allen M, Douglas T (2004) Microbe manufacturers of semiconductors. Chem Biol 11:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Fujio Y, Kume S (1991) Isolation and identification of thermophilic bacteria from sewage sludge compost. J Ferment Bioeng 72:334–337

    Article  Google Scholar 

  • Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327:347–357

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremed. J. 3:11–26

    Article  Google Scholar 

  • Gibson J, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles J Am Chem Soc. 129:11653–11661

    CAS  PubMed  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321

    Article  CAS  PubMed  Google Scholar 

  • Greene AD, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  CAS  PubMed  Google Scholar 

  • Gündüz G, Uslu IJ (1996) Powder characteristics and microstructure of uranium dioxide and gadolinium oxide fuel. Nucl Mater. 231:113–120

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269

    Article  CAS  Google Scholar 

  • Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer New York, pp 23–51

    Google Scholar 

  • Hussein GAMJ (1994) Formation, characterization, and catalytic activity of gadolinium oxide. Infrared spectroscopic studies. Phys Chem. 98:9657–9664

    CAS  Google Scholar 

  • Hussein AH, Lisowska BK, Leak DJ (2015) Chapter one—The genus Geobacillus and their biotechnological potential. Adv App Microbiol 92:1–48

    Article  Google Scholar 

  • Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, Su WC, Shieh DB (2009) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 131:66–68

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and futurepProspects. International Scholarly Research Notices. Article ID 359316, 18 p. http://dx.doi.org/10.1155/2014/359316

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  PubMed  Google Scholar 

  • Jang GG, Jacobs CB, Gresback RG, Ivanov IN, Meyer HM, III, Kidder M, Joshi PC, Jellison GE Jr, Phelps TJ, Graham DE, Moon JW (2015) Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 3: 644–650

    Google Scholar 

  • Johnson A, Zawadzka A, Deobald L, Crawford R, Paszczynski A (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanoparticle Res. 10:1009–1025

    Article  CAS  Google Scholar 

  • Johnson PA, Park HJ, Driscoll AJ (2011) Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol Biol 679:183–191

    Article  CAS  PubMed  Google Scholar 

  • Juibari MM, Abbasalizadeh S, Salehi Jouzani Gh, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mat Lett 65:1014–1017

    Article  CAS  Google Scholar 

  • Kalabegishvili TL, Kirkesali E, Ginturi E, Rcheulishvili A, Murusidze I, Pataraya D, Gurielidze M, Bagdavadze N, Kuchava N, Gvarjaladze D, Lomidze L (2013) Synthesis of gold nanoparticles by new strains of thermophilic actinomycetes. Nano Studies. 7:255–260

    Google Scholar 

  • Kalabegishvili TL, Murusidze IG, Prangishvili DA, Kvachadze LI, Kirkesali EI, Rcheulishvili AN, Ginturi EN, Janjalia MB, Tsertsvadze GI, Gabunia VM, Frontasyeva MV, Zinicovscaia I, Pavlov SS (2015) Silver manoparticles in Sulfolobus islandicus biomass for technological applications. Adv Sci Eng Med. 7:797–804

    Article  CAS  Google Scholar 

  • Kalimuthu K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    Article  CAS  Google Scholar 

  • Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem Int Ed 47:5186–5189

    Article  CAS  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Bacteriol 50:511–516

    Article  Google Scholar 

  • Khan SA, Ahmad A (2013) Phase, size and shape transformation by fungal biotransformation of bulk TiO2. Chem Engineering J 230: 367–371

    Google Scholar 

  • Khan SA, Ahmad A (2014) Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mat Res Bull. 48:4134–4138

    Article  CAS  Google Scholar 

  • Khan SA, Gambhir S, Ahmad A (2013) Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol. 5:249–257

    Article  CAS  Google Scholar 

  • Khan SA, Gambhir S, Ahmad A (2014) Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol. 2014; 5:249–257

    Google Scholar 

  • Koksharov YA, Chistyakova NI, Zavarzina DG, Treninkov IA, Polyakov SN, Rusakov VS (2009) EMR spectra of iron-based nanoparticles produced by dissimilatory bacteria. Solid State Phenom 152–153:415–418

    Article  Google Scholar 

  • Koshima SA (1984) A novel cold-tolerant insect found in a Himalayan glacier. Nature 310:225–227

    Article  Google Scholar 

  • Kristjansson JK, Stetter KO (1992) Thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press Inc, London, pp 1–18

    Google Scholar 

  • Kumar S, Sahoo R, Ahuja PS (2006) Isozyme of autoclavable superoxide dismutase (SOD), a process for the identification and extraction of the SOD and use of the said SOD in cosmetic, food, and pharmaceutical compositions. US Patent 7037697 B2

    Google Scholar 

  • Kumar S, Arya S, Nussinov R (2007) Temperature-dependent molecular adaptation features in proteins. In: Gerday C, Glansdorff N (eds) Physiology and Biochemistry of Extremophiles. ASM Press, Washington DC, pp 75–85

    Chapter  Google Scholar 

  • Lancaster VL, LoBrutto R, Selvaraj FM, Blankenship RE (2004) A cambialistic superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus. J Bacteriol 186:3408–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of lactam antibiotic combined with silver nanoparticles. Nanotechnol. 16:1912–1917

    Article  CAS  Google Scholar 

  • Li HB, Ji XL, Zhou ZD, Wang YQ, Zhang XB (2010a) Thermus thermophilus proteins that are differentially expressed in response to growth temperature and their implication in thermoadaptation. J Proteome Res 9:855–864

    Article  CAS  PubMed  Google Scholar 

  • Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R (2010b) Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater 20:1767–1777

    Article  CAS  Google Scholar 

  • Lim JH, Yu YG, Chio IG, Ryu JR, Ahn BY, Kim SH, Han YS (1997) Cloning and expression of superoxide dismutase from Aquifex pyrophilus, a hyperthermophilic bacterium. FEBS Lett 406:142–146

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Yin MM, Zhu H, Lu JR, Cui ZF (2011) Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles 15:221–226

    Article  CAS  PubMed  Google Scholar 

  • Lucena R, Simonet BM, Cardenas S, Valcarcel M (2011) Potential of nanoparticles in sample preparation. J Chromatogr A 1218:620–637

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Robb FT (2011) Thermophilic protein folding systems. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 583–599

    Chapter  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  PubMed  Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    Article  CAS  PubMed  Google Scholar 

  • Matijević E, Hsu WPJ (1987) Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III). Coll Interf Sci. 118:506–523

    Article  Google Scholar 

  • Mazdiyasni KS, Brown LM (1971) Influence of dynamic calcination on crystallite growth of submicron rare-earth oxides. J Am Ceram Soc 54:479–483

    Article  CAS  Google Scholar 

  • McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine. 2:153–167

    Article  CAS  PubMed  Google Scholar 

  • Mehta D, Satyanarayana T (2013) Diversity of hot environments and thermophilic microbes. In: Satyanarayana T, Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology: biotechnology of thermophiles. Springer Science + Business Media, Dordrecht, pp 3–60

    Chapter  Google Scholar 

  • Miller AF, Sorkin DL (1997) Superoxide dismutases: a molecular perspective. Comments Mol Cell Biophys. 9:1–48

    CAS  Google Scholar 

  • Minaeian S, Shahverdi AR, Nohi AS, Shahverdi HR (2008) Extracellular biosynthesis of silver nanoparticles by some bacteria. J Sci IAU. 17:1–4

    Google Scholar 

  • Moon JW, Roh Y, Yeary LW, Lauf RJ, Rawn CJ, Love LJ, Phelps TJ (2007) Microbial formation of lanthanide-substituted magnetites by Thermoanaerobacter sp. TOR-39. Extremophiles 11:859–867

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Ivanov IN, Duty CE, Love LJ, Rondinone AJ, Wang W, Li YL, Madden AS, Mosher JJ, Michael Z, Suresh AK, Rawn CJ, Jung H, Lauf RJ, Phelps TJ (2013) Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile. J Ind Microbiol Biotechnol 40:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Dasgupta AK, Chattopadhyay DJ, Chakrabarti K (2012) Thermostability, pH stability and dye degrading activity of a bacterial laccase are enhanced in the presence of Cu2O Nanoparticles. Bioresour Technol 116:348–354

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Bhattacharyya T, Dasgupta AK, Chakrabarti K (2015a) Nanotechnology based activation-immobilization of psychrophilic pectate lyase: a novel approach towards enzyme stabilization and enhanced activity. J Mol Catal B. 119:54–63

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2015b) Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization. Bioresour Technol 179:573–584

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Subbalaxmi S, Ramachandra Murthy V (2010) Microbial production of silver nanoparticles. Digest J Nanomater Biostruct 5:135–140

    Google Scholar 

  • Neuberger T, Schöpf B, Hofmann H, Hofmannc M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  • Occhipinti E, Martelli PL, Spinozzi F, Corsi F, Formantici C, Molteni L, Amenitsch H, Mariani P, Tortora P, Casadio R (2003) 3D structure of Sulfolobus solfataricus carboxypeptidase developed by molecular modeling is confirmed by site-directed mutagenesis and small-angle X-ray scattering. Biophys J 85:1165–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Occhipinti E, Bec N, Gambirasio B, Baietta G, Martelli PL, Casadio R, Balny C, Lange R, Tortora P (2006) Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions. Sulfolobus solfataricus carboxypeptidase as a model enzyme. Biochim Biophys Acta 1764:563–572

    Article  CAS  PubMed  Google Scholar 

  • Occhipinti E, Verderio P, Natalello A, Galbiati E, Colombo M, Mazzucchelli S, Tortora P, Doglia SM, Prosperi D (2011) Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale 3:387–390

    Article  CAS  PubMed  Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31

    Article  PubMed  CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevena T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem B. 110: 16248–16253

    Google Scholar 

  • Panek A, Pietrow O, Synowiecki J, Filipkowski P (2013) Immobilization on magnetic nanoparticles of the recombinant trehalose synthase from Deinococcus geothermalis. Food Bioproducts Proc. 91:632–637

    Article  CAS  Google Scholar 

  • Parikh RY, Singh S, Prasad BL, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp. towards understanding biochemical synthesis mechanism. ChemBioChem 9:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Patra S, Satpati B, Pradhan SK (2011) Quickest single-step mechanosynthetisis of CdS quantum dots and their microstructure characterization. J Nanosci Nanotechnol 11:4771–4780

    Article  CAS  PubMed  Google Scholar 

  • Pugliese PT, Pugliese SMT (2002) Cosmetic and skin protective compositions. US patent 2002(0044916):A1

    Google Scholar 

  • Ramanathan R, O’Mullane A, Parikh R, Smooker P, Bhargava S, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 18:714–719

    Google Scholar 

  • Rice CV, Wickham JR, Eastman MA, Harrison W, Pereira MP, Brown ED (2008) Magnetic resonance tells microbiology where to go; bacterial teichoic acid protects liquid water at sub-zero temperatures. In: Hoover RB, Levin GV, Rozanov AY, Davies PCW (eds) Instruments, methods, and missions for astrobiology XI. Proceedings of SPIE 7097. SPIE Press, San Diego. pp 1–10

    Google Scholar 

  • Richards AB, Krakowska S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH (2002) Trehalose: a review of properties, history of use and human tolerance and resultes of multiple safety studies. Food Chem Toxicol 40:871–898

    Article  CAS  PubMed  Google Scholar 

  • Robb FT, Maeder DL (1998) Novel evolutionary histories and adaptive features of proteins from hyperthermophiles. Curr Opin Biotechnol 9:288–291

    Article  CAS  PubMed  Google Scholar 

  • Roh Y, Vali H, Phelps TJ, Moon JW (2006) Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol 6:3517–3520

    Article  CAS  PubMed  Google Scholar 

  • Roh Y, Jang HD, Suh Y (2007) Microbial synthesis of magnetite and Mn-substituted magnetite nanoparticles: Influence of bacteria and incubation temperature. J Nanosci Nanotechnol 7:3938–3943

    Article  CAS  PubMed  Google Scholar 

  • Roser B (1991) Trehalose, a new approach to premium dried foods. Trends Food Sci Technol 2:166–169

    Article  CAS  Google Scholar 

  • Roulling F, Piette F, Cipolla A, Struvay C, Feller G (2011) Psychrophilic enzymes: cool responses to chilly problems. In: Horikoshi K (ed) Extremophiles Handbook. Springer, Tokyo, pp 891–913

    Chapter  Google Scholar 

  • Rowley AT, Parkin IP (1993) A convenient low temperature route to the formation of lanthanide oxides. Inorg Chim Acta 211:77–80

    Google Scholar 

  • Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem. 6:61–70

    CAS  Google Scholar 

  • Saiyed ZM, Sharma S, Godawat R, Telang SD, Ramchand CN (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131:240–244

    Article  CAS  PubMed  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Harris JI (1977) Superoxide dismutase from Thermus aquaticus. Isolation and characterisation of manganese and apoenzymes. Eur J Biochem 73:373–381

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana T, Littlechild J, Kawarabayasi Y (2013) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer Science + Business Media Dordrecht, Netherlands 954 p

    Book  Google Scholar 

  • Schiraldi C, di Lernia I, de Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20:420–425

    Article  CAS  PubMed  Google Scholar 

  • Schlemmer AF, Ware CF (1987) Purification and characterization of a pectin lyase produced by Pseudomonas fluorescens W51. J Bacteriol 169:4493–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 56:7–15

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Shen N, Xia XY, Chen Y, Zheng H, Zhong YC, Zeng RJ (2015) Palladium nanoparticles produced and dispersed by Caldicellulosiruptor saccharolyticus enhance the degradation of contaminants in water. RSC Adv. 5:15559–15565

    Article  CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 49:830–837

    Google Scholar 

  • Show S, Tamang A, Chowdhury T, Mandal D, Chattopadhyay B (2015) Bacterial (BKH1) assisted silica nanoparticles from silica rich substrates: a facile and green approach for biotechnological applications. Coll Surf B. 126:245–250

    Article  CAS  Google Scholar 

  • Sommaruga S, De Palma A, Mauri PL, Trisciani M, Basilico F, Martelli PL, Casadio R, Tortora P, Occhipinti E (2008) A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Proteins 71:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Sommaruga S, Galbiati E, Peñaranda-Avila J, Brambilla C, Tortora P, Colombo M, Prosperi D (2014) Immobilization of carboxypeptidase from Sulfolobus solfataricus on magnetic nanoparticles improves enzyme stability and functionality in organic media. BMC Biotechnol 14:82. doi:10.1186/1472-6750-14-82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Coll Interf Sci 275:177–182

    Article  CAS  Google Scholar 

  • Song C, Sheng L, Zhang X (2012) Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol 96:123–132

    Article  CAS  PubMed  Google Scholar 

  • Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol. 5:1–9

    Article  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 1996(18):149–158

    Article  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta Part A: Mol Biomol Spectr 114:144–147

    Article  CAS  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata. Japan Int J Syst Evol Microbiol. 51:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Thomas AS, Elcock AH (2004) Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperature. J Am Chem Soc 126:2208–2214

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM (2005) Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26:1104–1114

    Article  Google Scholar 

  • Tiquia-Arashiro SM (2014) Biotechnological applications of thermophilic carboxydotrophs. In: Thermophilic carboxydotrophs and their applications in biotechnology. Chapter 4. Springer International Publishing. pp 29–101

    Google Scholar 

  • Tiquia SM, Mormile MR (2010) Extremophiles–A source of innovation for industrial and environmental applications. Editorial overview. Environ Technol 31:823

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents. Biores Technol 55:201–206

    Article  CAS  Google Scholar 

  • Tiquia SM, Wan JHC, Tam NFY (2002) Microbial population dynamics and enzyme activities during composting. Compost Sci Util 10:150–161

    Article  Google Scholar 

  • Tiquia SM, Ichida JM, Keener HM, Elwell D, Burt E Jr, Michel FC Jr (2005) Bacterial community structure on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Appl Microbiol Biotechnol 67:412–419

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Zhu YJ (2006) Synthesis of CdS nanocrystals based on low-temperature thermolysis of one single source organic metallic precursor. Nanotechnol 17:845–851

    Article  CAS  Google Scholar 

  • Tortora P, Vanoni M (2004) Sulfolobus carboxipeptidase. In: Barrett AJ, Rawlings ND, Woessner F (eds) Handbook of proteolytic enzymes, 2nd edn. Elsevier, London, pp 953–955

    Chapter  Google Scholar 

  • Toueille M, Sommer S (2011) Life in extreme conditions: Deinococcus radiodurans, an organisms able to survive prolonged desiccation and high doses of ionizing radiation. In: Gargaud M, López-García P, Martin H (eds) Origins and evolution of life: An astrobiological perspective. Cambridge University Press, New York, pp 347–358

    Google Scholar 

  • Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18:249–258

    Article  CAS  Google Scholar 

  • Truong LV, Tuyen H, Helmke E, Binh LT, Schweder T (2001) Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5:35–44

    Article  CAS  PubMed  Google Scholar 

  • Vetriani C, Maeder DL, Tolliday N, Yip KS-P, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100 °C: a key role for ionic interactions. Proc Natl Acad Sci USA 95:12300–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926

    PubMed  PubMed Central  Google Scholar 

  • Von Klein D, Arab H, Völker H, Thomm M (2002) Methanosarcina baltica, sp. nov., a novel methanogen isolated from the gotland deep of the Baltic Sea. Extremophiles 6:103–110

    Article  Google Scholar 

  • Ward DM, Tayne TA, Andersonf KL, Bateson MM (1987) Community structure and interactions among members of hot spring cyanobacterial mats. Symp Soc Gen Microbiol 41:179–210

    CAS  Google Scholar 

  • Weinstein RN, Palm ME, Johnstone K, Wynn-Wiliiams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fell fi eld soils in the maritime Antarctic. Mycologia 89:706–711

    Article  Google Scholar 

  • Whittaker MM, Whittaker JW (2000) Recombinant superoxide dismutase from a hyperthermophilic archaeon. Pyrobaculum aerophilum. J Bio Inorg Chem 5:402–408

    CAS  Google Scholar 

  • Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348

    Article  CAS  Google Scholar 

  • Woo EJ, Ryu SI, Song HN, Jung TY, Yeon SM, Lee HA, Park BC, Park KH, Lee SB (2010) Structural insights on the new mechanism of trehalose synthesis by trehalose synthase TreT from Pyrococcus horikoshii. J Mol Biol 404:247–259

    Article  CAS  PubMed  Google Scholar 

  • Yamano S, Maruyama T (1999) An azide-insensitive superoxide dismutase from a hyperthermophilic archaeon. Sulfolobus solfataricus. J Biochem 125:186–193

    Article  CAS  PubMed  Google Scholar 

  • Yamano S, Sako Y, Nomura N, Maruyama T (1999) A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J Biochem 126: 218–225

    Google Scholar 

  • Yeary LW, Moon JW, Rawn CJ, Love LJ, Rondinone AJ, Thompson JR, Chakoumakos BC, Phelps TJ (2011) Magnetic properties of bio-synthesized zinc ferrite nanoparticles. J Magn Magnetic Mat 323:3043–3048

    Article  CAS  Google Scholar 

  • Yu WW, Peng X (2002) Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angrew Chem Int Ed. 41:2368–2371

    Article  CAS  Google Scholar 

  • Yu CC, Kuo YY, Liang CF, Chien WT, Wu HT, Chang TC, Jan FD, Lin CC (2012) Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjug Chem 23:714–724

    Article  CAS  PubMed  Google Scholar 

  • Yiu HHP, Keane MA(2012) Enzyme-magnetic nanoparticle hybrids: New effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87:(5).·doi:10.1002/jctb.3735

    Google Scholar 

  • Zdziebło A, Synowiecki J (2006) Production of trehalose by intramolecular transglucosylation of maltose catalyzed by a new enzyme from Thermus thermophilus. Food Chem 96:8–13

    Article  CAS  Google Scholar 

  • Zhang M, Drechsler M, Müller AHE (2004a) Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes. Chem Mater 16:537–543

    Article  CAS  Google Scholar 

  • Zhang GH, Ge HB, Li QY, Zhang XY (2004b) Role of SOD in protection strawberry leaves from photo-inhibition damage. Chin J Fruit Sci 21:328–330

    Google Scholar 

  • Zhang P, Liu S, Cong B, Wu G, Liu C, Lin X, Shen J, Huang X (2011) A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp ICE-L. Mar Biotechnol 13:393–401

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Szeker K, Janocha B, Böhme T, Albrecht D, Mikhailopulo IA, Neubauer P (2013) Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides. FEBS J 280:1475–1490

    Article  CAS  PubMed  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Tiquia-Arashiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Tiquia-Arashiro, S., Rodrigues, D. (2016). Thermophiles and Psychrophiles in Nanotechnology. In: Extremophiles: Applications in Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-45215-9_3

Download citation

Publish with us

Policies and ethics