Inference of Delayed Biological Regulatory Networks from Time Series Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)


The modeling of Biological Regulatory Networks (BRNs) relies on background knowledge, deriving either from literature and/or the analysis of biological observations. But with the development of high-throughput data, there is a growing need for methods that automatically generate admissible models. Our research aim is to provide a logical approach to infer BRNs based on given time series data and known influences among genes. In this paper, we propose a new methodology for models expressed through a timed extension of the Automata Networks [22] (well suited for biological systems). The main purpose is to have a resulting network as consistent as possible with the observed datasets. The originality of our work consists in the integration of quantitative time delays directly in our learning approach. We show the benefits of such automatic approach on dynamical biological models, the DREAM4 datasets, a popular reverse-engineering challenge, in order to discuss the precision and the computational performances of our algorithm.


Inference model Dynamic modeling Delayed biological regulatory networks Automata network Time series data 


  1. 1.
    Ben Abdallah, E., Folschette, M., Roux, O., Magnin, M.: Exhaustive analysis of dynamical properties of biological regulatory networks with answer set programming. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 281–285. IEEE (2015)Google Scholar
  2. 2.
    Ahmad, J., Bernot, G., Comet, J.-P., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. ComPlexUs 3(4), 231–251 (2006)CrossRefGoogle Scholar
  3. 3.
    Akutsu, T., Tamura, T., Horimoto, K.: Completing networks using observed data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 126–140. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Anwar, S., Baral, C., Inoue, K.: Encoding higher level extensions of petri nets in answer set programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 116–121. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, New York (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Callebaut, W.: Scientific perspectivism: a philosopher of sciences response to the challenge of big data biology. Stud. Hist. Philos. Sci. Part C. Stud. Hist. Philos. Biol. Biomed. Sci. 43(1), 69–80 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Comet, J.-P., Fromentin, J., Bernot, G., Roux, O.: A formal model for gene regulatory networks with time delays. In: Chan, J.H., Ong, Y.-S., Cho, S.-B. (eds.) CSBio 2010. CCIS, vol. 115, pp. 1–13. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Nat. Sci. Rev. 1(2), 293–314 (2014)CrossRefGoogle Scholar
  9. 9.
    Folschette, M., Paulevé, L., Inoue, K., Magnin, M., Roux, O.: Identification of biological regulatory networks from process hitting models. Theoret. Comput. Sci. 568, 49–71 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Freedman, P.: Time, petri nets, and robotics. IEEE Trans. Robot. Autom. 7(4), 417–433 (1991)CrossRefGoogle Scholar
  11. 11.
    Gallet, E., Manceny, M., Le Gall, P., Ballarini, P.: An LTL model checking approach for biological parameter inference. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 155–170. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Goldstein, Y.A.B., Bockmayr, A.: A lattice-theoretic framework for metabolic pathway analysis. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 178–191. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 67–75. MIT Press, Cambridge (1997)Google Scholar
  14. 14.
    Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic bayesian networks. Briefings Bioinf. 4(3), 228–235 (2003)CrossRefGoogle Scholar
  15. 15.
    Koh, C., Fang-Xiang, W., Selvaraj, G., Kusalik, A.J.: Using a state-space model and location analysis to infer time-delayed regulatory networks. EURASIP J. Bioinf. Syst. Biol. 2009(1), 1 (2009)CrossRefGoogle Scholar
  16. 16.
    Koksal, A.S., Yewen, P., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Synthesis of biological models from mutation experiments. ACM SIGPLAN Not. 48, 469–482 (2013). ACMzbMATHGoogle Scholar
  17. 17.
    Liu, T.-F., Sung, W.-K., Mittal, A.: Learning multi-time delay gene network using bayesian network framework. In: 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2004, pp. 640–645. IEEE (2004)Google Scholar
  18. 18.
    Marx, V.: Biology: the big challenges of big data. Nature 498(7453), 255–260 (2013)CrossRefGoogle Scholar
  19. 19.
    Matsuno, H., doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, p. 87. World Scientific Press, Singapore (2000)Google Scholar
  20. 20.
    Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean network identification from multiplex time series data. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 170–181. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  21. 21.
    Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 343–357. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Paulevé, L.: Goal-oriented reduction of automata networks. In: CMSB 2016–14th Conference on Computational Methods for Systems Biology (2016)Google Scholar
  23. 23.
    Paulevé, L., Chancellor, C., Folschette, M., Magnin, M., Roux, O.: Logical Modeling of Biological Systems, chapter Analyzing Large Network Dynamics with Process Hitting, pp. 125–166. Wiley, Hoboken (2014)Google Scholar
  24. 24.
    Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic \(\pi \)-calculus framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.: Crowdsourcing network inference: the dream predictive signaling network challenge. Sci. Signal. 4(189), mr7 (2011)CrossRefGoogle Scholar
  26. 26.
    Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5(1), 331 (2009)Google Scholar
  27. 27.
    Schaffter, T., Marbach, D., Floreano, D.: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)CrossRefGoogle Scholar
  28. 28.
    Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory networks. Theoret. Comput. Sci. 391(3), 258–275 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sima, C., Hua, J., Jung, S.: Inference of gene regulatory networks using time-series data: a survey. Curr. Genomics 10(6), 416–429 (2009)CrossRefGoogle Scholar
  30. 30.
    Talikka, M., Boue, S., Schlage, W.K.: Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Comput. Syst. Toxicol. 2015, 65–93 (2015)CrossRefGoogle Scholar
  31. 31.
    Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theoret. Biol. 153(1), 1–23 (1991)CrossRefGoogle Scholar
  32. 32.
    Namhee, Y., Seo, J., Rho, K., Jang, Y., Park, J., Kim, W.K., Lee, S.: Hipathdb: a human-integrated pathway database with facile visualization. Nucleic Acids Res. 40(D1), D797–D802 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhang, Z.-Y., Horimoto, K., Liu, Z.: Time series segmentation for gene regulatory process with time-window-extension (2008)Google Scholar
  34. 34.
    Zhao, W., Serpedin, E., Dougherty, E.R.: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17), 2129–2135 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institut de Recherche en Communications et Cybernétique de NantesLUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597NantesFrance
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.Department of Computer ScienceTokyo Institute of TechnologyTokyoJapan

Personalised recommendations