Skip to main content

Inference of Delayed Biological Regulatory Networks from Time Series Data

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9859))

Included in the following conference series:

Abstract

The modeling of Biological Regulatory Networks (BRNs) relies on background knowledge, deriving either from literature and/or the analysis of biological observations. But with the development of high-throughput data, there is a growing need for methods that automatically generate admissible models. Our research aim is to provide a logical approach to infer BRNs based on given time series data and known influences among genes. In this paper, we propose a new methodology for models expressed through a timed extension of the Automata Networks [22] (well suited for biological systems). The main purpose is to have a resulting network as consistent as possible with the observed datasets. The originality of our work consists in the integration of quantitative time delays directly in our learning approach. We show the benefits of such automatic approach on dynamical biological models, the DREAM4 datasets, a popular reverse-engineering challenge, in order to discuss the precision and the computational performances of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All programs, described in this article, for Timed Automata Network generation are implemented in ASP and are available online at: http://www.irccyn.ec-nantes.fr/~benabdal/modeling-biological-regulatory-networks.zip.

References

  1. Ben Abdallah, E., Folschette, M., Roux, O., Magnin, M.: Exhaustive analysis of dynamical properties of biological regulatory networks with answer set programming. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 281–285. IEEE (2015)

    Google Scholar 

  2. Ahmad, J., Bernot, G., Comet, J.-P., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. ComPlexUs 3(4), 231–251 (2006)

    Article  Google Scholar 

  3. Akutsu, T., Tamura, T., Horimoto, K.: Completing networks using observed data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 126–140. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Anwar, S., Baral, C., Inoue, K.: Encoding higher level extensions of petri nets in answer set programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 116–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  6. Callebaut, W.: Scientific perspectivism: a philosopher of sciences response to the challenge of big data biology. Stud. Hist. Philos. Sci. Part C. Stud. Hist. Philos. Biol. Biomed. Sci. 43(1), 69–80 (2012)

    Article  MathSciNet  Google Scholar 

  7. Comet, J.-P., Fromentin, J., Bernot, G., Roux, O.: A formal model for gene regulatory networks with time delays. In: Chan, J.H., Ong, Y.-S., Cho, S.-B. (eds.) CSBio 2010. CCIS, vol. 115, pp. 1–13. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Nat. Sci. Rev. 1(2), 293–314 (2014)

    Article  Google Scholar 

  9. Folschette, M., Paulevé, L., Inoue, K., Magnin, M., Roux, O.: Identification of biological regulatory networks from process hitting models. Theoret. Comput. Sci. 568, 49–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Freedman, P.: Time, petri nets, and robotics. IEEE Trans. Robot. Autom. 7(4), 417–433 (1991)

    Article  Google Scholar 

  11. Gallet, E., Manceny, M., Le Gall, P., Ballarini, P.: An LTL model checking approach for biological parameter inference. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 155–170. Springer, Heidelberg (2014)

    Google Scholar 

  12. Goldstein, Y.A.B., Bockmayr, A.: A lattice-theoretic framework for metabolic pathway analysis. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 178–191. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 67–75. MIT Press, Cambridge (1997)

    Google Scholar 

  14. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic bayesian networks. Briefings Bioinf. 4(3), 228–235 (2003)

    Article  Google Scholar 

  15. Koh, C., Fang-Xiang, W., Selvaraj, G., Kusalik, A.J.: Using a state-space model and location analysis to infer time-delayed regulatory networks. EURASIP J. Bioinf. Syst. Biol. 2009(1), 1 (2009)

    Article  Google Scholar 

  16. Koksal, A.S., Yewen, P., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Synthesis of biological models from mutation experiments. ACM SIGPLAN Not. 48, 469–482 (2013). ACM

    MATH  Google Scholar 

  17. Liu, T.-F., Sung, W.-K., Mittal, A.: Learning multi-time delay gene network using bayesian network framework. In: 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2004, pp. 640–645. IEEE (2004)

    Google Scholar 

  18. Marx, V.: Biology: the big challenges of big data. Nature 498(7453), 255–260 (2013)

    Article  Google Scholar 

  19. Matsuno, H., doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, p. 87. World Scientific Press, Singapore (2000)

    Google Scholar 

  20. Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean network identification from multiplex time series data. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 170–181. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 343–357. Springer, Heidelberg (2014)

    Google Scholar 

  22. Paulevé, L.: Goal-oriented reduction of automata networks. In: CMSB 2016–14th Conference on Computational Methods for Systems Biology (2016)

    Google Scholar 

  23. Paulevé, L., Chancellor, C., Folschette, M., Magnin, M., Roux, O.: Logical Modeling of Biological Systems, chapter Analyzing Large Network Dynamics with Process Hitting, pp. 125–166. Wiley, Hoboken (2014)

    Google Scholar 

  24. Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic \(\pi \)-calculus framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.: Crowdsourcing network inference: the dream predictive signaling network challenge. Sci. Signal. 4(189), mr7 (2011)

    Article  Google Scholar 

  26. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5(1), 331 (2009)

    Google Scholar 

  27. Schaffter, T., Marbach, D., Floreano, D.: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)

    Article  Google Scholar 

  28. Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory networks. Theoret. Comput. Sci. 391(3), 258–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sima, C., Hua, J., Jung, S.: Inference of gene regulatory networks using time-series data: a survey. Curr. Genomics 10(6), 416–429 (2009)

    Article  Google Scholar 

  30. Talikka, M., Boue, S., Schlage, W.K.: Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Comput. Syst. Toxicol. 2015, 65–93 (2015)

    Article  Google Scholar 

  31. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theoret. Biol. 153(1), 1–23 (1991)

    Article  Google Scholar 

  32. Namhee, Y., Seo, J., Rho, K., Jang, Y., Park, J., Kim, W.K., Lee, S.: Hipathdb: a human-integrated pathway database with facile visualization. Nucleic Acids Res. 40(D1), D797–D802 (2012)

    Article  Google Scholar 

  33. Zhang, Z.-Y., Horimoto, K., Liu, Z.: Time series segmentation for gene regulatory process with time-window-extension (2008)

    Google Scholar 

  34. Zhao, W., Serpedin, E., Dougherty, E.R.: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17), 2129–2135 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Ben Abdallah .

Editor information

Editors and Affiliations

A Appendixes

A Appendixes

1.1 A.1 Proof of Theorem 1

Theorem 3

(Completeness). Let \(\mathcal {AN}=(\varSigma ,\mathcal {S},\mathcal {T})\) be a Timed Automata Network, \(\varGamma \) be a chronogram of the components of \(\mathcal {AN}\), \(i \in \mathsf {N}\) and \(R \in \mathcal {T}\) be the set of timed local transitions that realized the chronogram \(\varGamma \) such that \((a_i,l,a_j,\delta ) \in R \implies |l| \le i\). Let \(\chi \) be the regulation influences of all \(a \in \varSigma \). Let \(\mathcal {AN}'=(\varSigma ,\mathcal {S},\emptyset )\) be a Timed Automata Network. Given \(\mathcal {AN}'\), \(\varGamma \), \(\chi \) and i as input, Algorithm 1 is complete: it will output a set of Timed Automata Network \(\phi \), such that \(\exists \mathcal {AN}''=(\varSigma ,\mathcal {S},\varphi ') \in \phi \) with \(R \subseteq \varphi '\).

Proof

Let us suppose that the algorithm is not complete, then there is a timed local transition \(h \in R\) that realized \(\varGamma \) and \(h \not \in \varphi '\). In Algorithm 1, after step 1, \(\varphi \) contains all timed local transitions that can realize each change of the chronogram \(\varGamma \). Here there is no timed local transition \(h \in R\) that realizes \(\varGamma \) which is not generated by the algorithm, so \(h \in \varphi \). Then it implies that at step 2, \(\forall \varphi ', h \not \in \varphi '\). But since h realizes one of the change of \(\varGamma \) and h is generated at step 1, then it will be present in one of the minimal subset of timed local transitions. Such that h will be in one of the networks outputted by the algorithm.    \(\square \)

1.2 A.2 Proof of Theorem 2

Theorem 4

(Complexity). Let \(\mathcal {AN}=(\varSigma ,\mathcal {S},\mathcal {T})\) be a Timed Automata Network, \(|\varSigma |\) be the number of automaton of \(\mathcal {AN}\) and \(\eta \) be the total number of local state of a automaton of \(\mathcal {AN}\). Let \(\varGamma \) be a chronogram of the components of \(\mathcal {AN}\) over \(\tau \) units of time, such that c is the number of changes of \(\varGamma \). The memory use of Algorithm 1 belongs to \(O(\tau \cdot i^{|\varSigma |+1} \cdot 2^{\tau \cdot i^{|\varSigma |+1})}\) that is bounded by \(O(\tau \cdot |\varSigma |^{T\cdot |\varSigma |^{|\varSigma |+1}})\). The complexity of learning \(\mathcal {AN}\) by generating timed local transitions from the observations of \(\varGamma \) with Algorithm 1 belongs to \(O(c\cdot i^{|\varSigma |+1} + 2^{2\cdot \tau \cdot i^{|\varSigma |+1}} + \)c\( \cdot 2^{\tau \cdot i^{|\varSigma |+1}})\), that is bounded by \(O(\tau \cdot 2^{3\cdot \tau \cdot |\varSigma |^{|\varSigma |+1}})\).

Proof

Let i be the maximal indegree of a timed local transition in \(\mathcal {AN}\), \(0 \le i \le |\varSigma |\). Let p be an automaton local state of \(\mathcal {AN}\) then \(|\varSigma |\) is maximal the number of automaton that can influence p. There is \(i^{|\varSigma |}\) possible combinations of those regulators that can influences p at the same time forming a timed local transition. There is at most \(\tau \) possible delays, so that there are \(\tau \cdot |\varSigma | \cdot i^{|\varSigma |}\) possibles timed local transitions, thus in Algorithm 1 at step 1, the memory is bounded by \(O(\tau \cdot i^{|\varSigma |+1})\), which belongs to \(O(\tau \cdot |\varSigma |^{|\varSigma |+1})\) since \(0 \le i \le |\varSigma |\). Generating all minimal subsets of timed local transitions \(\varphi \) of \(\mathcal {AN}\) that can realize \(\varGamma \) can require to generate at most \(2^{\tau \cdot |\varSigma | \cdot i^{|\varSigma |+1}}\) set of rules. Thus, the memory of our algorithm belongs to \(O(\tau \cdot i^{|\varSigma |+1} \cdot 2^{\tau \cdot i^{|\varSigma |+1}})\) and is bounded by \(O(\tau \cdot |\varSigma |^{|\varSigma |+1} \cdot 2^{\tau \cdot |\varSigma |^{|\varSigma |+1}})\).

The complexity of this algorithm belongs to \(O(c \cdot i^|\varSigma |+1)\). Since \(0 \le i \le |\varSigma |\) and \(0 \le c \le \tau \) the complexity of Algorithm 1 is bounded by \(O(\tau \cdot |\varSigma |^{|\varSigma |+1}))\).

Generating all minimal subsets of timed local transitions \(\varphi \) of \(\mathcal {AN}'\) that realize \(\varGamma \) can require to generate at most \(2^{\tau \cdot i^{|\varSigma |+1}}\) set of timed local transitions. Each set has to be compared with the others to keep only the minimal ones, which costs \(O(2^{2\cdot \tau \cdot i^{|\varSigma |+1}})\). Furthermore, each set of timed local transitions has to realize each change of \(\varGamma \), it requires to check c changes and it costs \(O(c \cdot 2^{\tau \cdot i^{|\varSigma |+1}})\). Finally, the total complexity of learning \(\mathcal {AN}\) by generating timed local transitions from the observations of \(\varGamma \) belongs to \(O(c\cdot i^{|\varSigma |+1} + 2^{2\cdot \tau \cdot i^{|\varSigma |+1}} + c \cdot 2^{\tau \cdot i^{|\varSigma |+1}})\). that is bounded by \(O(3\tau \cdot 2^{2\cdot \tau \cdot |\varSigma |^{|\varSigma |+1}})\).

   \(\square \)

Fig. 7.
figure 7

The influence network of the DREAM4 challenge model (100 genes) given by GeneNetWeaver (GNW) data generator [27]. Each node is a gene and each edge is an influence from the source to the target gene.

1.3 A.3 DREAM4: Influence Network

The Fig. 7 presents the regulatory graph that we are based on to identify the signs (negative or positive), the thresholds and the quantitative time delays of the learned transitions.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ben Abdallah, E., Ribeiro, T., Magnin, M., Roux, O., Inoue, K. (2016). Inference of Delayed Biological Regulatory Networks from Time Series Data. In: Bartocci, E., Lio, P., Paoletti, N. (eds) Computational Methods in Systems Biology. CMSB 2016. Lecture Notes in Computer Science(), vol 9859. Springer, Cham. https://doi.org/10.1007/978-3-319-45177-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45177-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45176-3

  • Online ISBN: 978-3-319-45177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics