Skip to main content

PREMER: Parallel Reverse Engineering of Biological Networks with Information Theory

Part of the Lecture Notes in Computer Science book series (LNBI,volume 9859)


A common approach for reverse engineering biological networks from data is to deduce the existence of interactions among nodes from information theoretic measures. Estimating these quantities in a multidimensional space is computationally demanding for large datasets. This hampers the application of elaborate algorithms – which are crucial for discarding spurious interactions and determining causal relationships – to large-scale network inference problems. To alleviate this issue we have developed PREMER, a software tool which can automatically run in parallel and sequential environments, thanks to its implementation of OpenMP directives. It recovers network topology and estimates the strength and causality of interactions using information theoretic criteria, and allowing the incorporation of prior knowledge. A preprocessing module takes care of imputing missing data and correcting outliers if needed. PREMER ( runs on Windows, Linux and OSX, it is implemented in Matlab/Octave and Fortran 90, and it does not require any commercial software.


  • Network inference
  • Information theory
  • Parallel computing

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-45177-0_21
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-45177-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. Bonneau, R., Reiss, D.J., Shannon, P., Facciotti, M., Hood, L., Baliga, N.S., Thorsson, V.: The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7(5), R36 (2006)

    CrossRef  Google Scholar 

  2. Cellucci, C., Albano, A., Rapp, P.: Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 71(6), 066208 (2005)

    MathSciNet  CrossRef  Google Scholar 

  3. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

    CrossRef  Google Scholar 

  4. Folch-Fortuny, A., Villaverde, A.F., Ferrer, A., Banga, J.R.: Enabling network inference methods to handle missing data and outliers. BMC Bioinform. 16(1), 283 (2015)

    CrossRef  Google Scholar 

  5. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Saeys, Y., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLOS ONE 5(9), e12776 (2010)

    CrossRef  Google Scholar 

  6. Jang, I., Margolin, A., Califano, A.: hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests. Interface Focus 3(4), 20130011 (2013)

    CrossRef  Google Scholar 

  7. Le Novère, N.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16, 146–158 (2015)

    CrossRef  Google Scholar 

  8. Meyer, P., Lafitte, F., Bontempi, G.: minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform. 9(1), 461 (2008)

    CrossRef  Google Scholar 

  9. Samoilov, M., Arkin, A., Ross, J.: On the deduction of chemical reaction pathways from measurements of time series of concentrations. Chaos 11(1), 108–114 (2001)

    CrossRef  MATH  Google Scholar 

  10. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)

    CrossRef  Google Scholar 

  11. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461 (2000)

    CrossRef  Google Scholar 

  12. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Villaverde, A.F., Ross, J., Morán, F., Banga, J.R.: MIDER: network inference with mutual information distance and entropy reduction. PLOS ONE 9(5), e96732 (2014)

    CrossRef  Google Scholar 

Download references


AFV acknowledges funding from the Galician government (Xunta de Galiza) through the I2C fellowship ED481B2014/133-0. KB was supported by the German Federal Ministry of Research and Education (BMBF, OncoPath consortium). JRB acknowledges funding from the Spanish government (MINECO) and the European Regional Development Fund (ERDF) through the project “SYNBIOFACTORY” (grant number DPI2014-55276-C5-2-R). This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 686282 (CanPathPro). We thank David R. Penas and David Henriques for assistance with the implementation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alejandro F. Villaverde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Villaverde, A.F., Becker, K., Banga, J.R. (2016). PREMER: Parallel Reverse Engineering of Biological Networks with Information Theory. In: Bartocci, E., Lio, P., Paoletti, N. (eds) Computational Methods in Systems Biology. CMSB 2016. Lecture Notes in Computer Science(), vol 9859. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45176-3

  • Online ISBN: 978-3-319-45177-0

  • eBook Packages: Computer ScienceComputer Science (R0)