Skip to main content

Generalized Method of Moments for Stochastic Reaction Networks in Equilibrium

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9859))

Included in the following conference series:

Abstract

Calibrating parameters is a crucial problem within quantitative modeling approaches to reaction networks. Existing methods for stochastic models rely either on statistical sampling or can only be applied to small systems. Here we present an inference procedure for stochastic models in equilibrium that is based on a moment matching scheme with optimal weighting and that can be used with high-throughput data like the one collected by flow cytometry. Our method does not require an approximation of the underlying equilibrium probability distribution and, if reaction rate constants have to be learned, the optimal values can be computed by solving a linear system of equations. We evaluate the effectiveness of the proposed approach on three case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The existence and convergence of moments is treated Gupta et al. [11]. It can be proved for the models in Sect. 4 with positive rate constants.

  2. 2.

    The case of both repressors being bound, would result in samples around the origin, which can be neglected if there are no such samples.

References

  1. Ale, A., Kirk, P., Stumpf, M.: A general moment expansion method for stochastic kinetic models. J. Chem. Phys. 138(17), 174101 (2013)

    Article  Google Scholar 

  2. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemicalkinetics. EURASIP J. Bioinf. Syst. Biol. 9, 1–14 (2012)

    Google Scholar 

  4. Andreychenko, A., Mikeev, L., Wolf, V.: Model reconstruction for moment-based stochastic chemical kinetics. ACM Trans. Model. Comput. Simul. (TOMACS) 25(2), 12 (2015)

    Article  MathSciNet  Google Scholar 

  5. Boys, R., Wilkinson, D., Kirkwood, T.: Bayesian inference for a discretely observed stochastic kinetic model. Stat. Comput. 18, 125–135 (2008)

    Article  MathSciNet  Google Scholar 

  6. Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fournier, T., Gabriel, J.-P., Mazza, C., Pasquier, J., Galbete, J.L., Mermod, N.: Steady-state expression of self-regulated genes. Bioinformatics 23(23), 3185–3192 (2007)

    Article  Google Scholar 

  8. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in escherichia coli. Nature 403(6767), 339–342 (2000)

    Article  Google Scholar 

  9. Geva-Zatorsky, N., Rosenfeld, N., et al.: Oscillations and variability in the p53 system. Mol. Syst. Biol. 2(1) (2006)

    Google Scholar 

  10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  11. Gupta, A., Briat, C., Khammash, M.: A scalable computational framework for establishing long-term behavior of stochastic reaction networks. PLoS Comput. Biol. 10(6), e1003669 (2014)

    Article  Google Scholar 

  12. Hall, A.R.: Generalized Method of Moments. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  13. Hanley, M.B., Lomas, W., Mittar, D., Maino, V., Park, E.: Detection of low abundance RNA molecules in individual cells by flow cytometry. PloS one 8(2), e57002 (2013)

    Article  Google Scholar 

  14. Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econometrica 50(4), 1029–1054 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hansen, L.P., Heaton, J., Yaron, A.: Finite-sample properties of some alternative GMM estimators. J. Bus. Econ. Stat. 14(3), 262–280 (1996)

    Google Scholar 

  16. Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P., Allgöwer, F.: Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinf. 12(1), 1 (2011)

    Article  MATH  Google Scholar 

  17. Isaacs, F.J., Hasty, J., Cantor, C.R., Collins, J.J.: Prediction and measurement of an autoregulatory genetic module. PNAS 100(13), 7714–7719 (2003)

    Article  Google Scholar 

  18. Kügler, P.: Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PloS one 7(8), e43001 (2012)

    Article  Google Scholar 

  19. Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C., Hogquist, K.A.: Steady-state production of il-4 modulates immunity in mouse strains and is determined by lineage diversity of INKT cells. Nat. Immunol. 14(11), 1146–1154 (2013)

    Article  Google Scholar 

  20. Lipshtat, A., Loinger, A., Balaban, N.Q., Biham, O.: Genetic toggle switch without cooperative binding. Phys. Rev. Lett. 96(18), 188101 (2006)

    Article  Google Scholar 

  21. Lück, A., Wolf, V.: Generalized method of moments for estimating parameters of stochastic reaction networks. ArXiv e-prints, May 2016

    Google Scholar 

  22. Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformisation of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)

    Article  Google Scholar 

  23. Mátyás, L.: Generalized Method of Moments Estimation, vol. 5. Cambridge University Press, New York (1999)

    Book  Google Scholar 

  24. Milner, P., Gillespie, C.S., Wilkinson, D.J.: Moment closure based parameter inference of stochastic kinetic models. Stat. Comput. 23(2), 287–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Munsky, B., Fox, Z., Neuert, G.: Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics. Methods 85, 12–21 (2015)

    Article  Google Scholar 

  26. Newey, W.K., Smith, R.J.: Higher order properties of gmm and generalized empirical likelihood estimators. Econometrica 72(1), 219–255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nishihara, M., Ogura, H., Ueda, N., Tsuruoka, M., Kitabayashi, C., et al.: IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int. Immunol. 19(6), 695–702 (2007)

    Article  Google Scholar 

  28. Pearson, K.: Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 185, 71–110 (1894)

    Article  MATH  Google Scholar 

  29. Reinker, S., Altman, R.M., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEEE Proc. Syst. Biol 153, 168–178 (2006)

    Article  Google Scholar 

  30. Singh, A., Hespanha, J.P.: Lognormal moment closures for biochemical reactions. In: 2006 45th IEEE Conference on Decision and Control, pp. 2063–2068. IEEE (2006)

    Google Scholar 

  31. Tian, T., Xu, S., Gao, J., Burrage, K.: Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics 23, 84–91 (2007)

    Article  Google Scholar 

  32. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6(31), 187–202 (2009)

    Article  Google Scholar 

  33. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6(31), 187–202 (2009)

    Article  Google Scholar 

  34. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. C & H, Sesser (2006)

    MATH  Google Scholar 

  35. Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. PNAS 109(21), 8340–8345 (2012)

    Article  Google Scholar 

  36. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (TOMS) 23(4), 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Backenköhler, M., Bortolussi, L., Wolf, V. (2016). Generalized Method of Moments for Stochastic Reaction Networks in Equilibrium. In: Bartocci, E., Lio, P., Paoletti, N. (eds) Computational Methods in Systems Biology. CMSB 2016. Lecture Notes in Computer Science(), vol 9859. Springer, Cham. https://doi.org/10.1007/978-3-319-45177-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45177-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45176-3

  • Online ISBN: 978-3-319-45177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics