Advertisement

Hybrid Reductions of Computational Models of Ion Channels Coupled to Cellular Biochemistry

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)

Abstract

Computational models of cellular physiology are often too complex to be analyzed with currently available tools. By model reduction we produce simpler models with less variables and parameters, that can be more easily simulated and analyzed. We propose a reduction method that applies to ordinary differential equations models of voltage and ligand gated ion channels coupled to signaling and metabolism. These models are used for studying various biological functions such as neuronal and cardiac activity, or insulin production by pancreatic beta-cells. Models of ion channels coupled to cell biochemistry share a common structure. For such models we identify fast and slow sub-processes, driving and slaved variables, as well as a set of reduced models. Various reduced models are valid locally and can change on a trajectory. The resulting reduction is hybrid, implying transitions from one reduced model (mode) to another one.

Keywords

Outer Layer Singular Perturbation Invariant Manifold Fast Variable Matched Asymptotic Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the University of Chicago and by the FACCTS (France and Chicago Collaborating in The Sciences) program. The authors express their gratitude to the reviewers for their many helpful comments.

References

  1. 1.
    Biktasheva, I., Simitev, R., Suckley, R., Biktashev, V.: Asymptotic properties of mathematical models of excitability. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 364(1842), 1283–1298 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theoret. Biol. 253(3), 544–560 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Clewley, R.: Dominant-scale analysis for the automatic reduction of high-dimensional ODE systems. In: ICCS 2004 Proceedings, Complex Systems Institute, New England (2004)Google Scholar
  4. 4.
    Clewley, R., Rotstein, H.G., Kopell, N.: A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Model. Simul. 4(3), 732–759 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fridlyand, L.E., Jacobson, D., Kuznetsov, A., Philipson, L.H.: A model of action potentials and fast Ca 2+ dynamics in pancreatic \(\beta \)-cells. Biophys. J. 96(8), 3126–3139 (2009)CrossRefGoogle Scholar
  7. 7.
    Fridlyand, L.E., Jacobson, D.A., Philipson, L.: Ion channels and regulation of insulin secretion in human \(\beta \)-cells: a computational systems analysis. Islets 5(1), 1–15 (2013)CrossRefGoogle Scholar
  8. 8.
    Fridlyand, L.E., Philipson, L.H.: Pancreatic beta cell G-protein coupled receptors and second messenger interactions: a systems biology computational analysis. PloS one 11(5), e0152869 (2016)CrossRefGoogle Scholar
  9. 9.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Hille, B.: Ion Channels of Excitable Membranes. Sinauer, Sunderland (2001)Google Scholar
  11. 11.
    Hodgkin, A., Huxley, A.: Propagation of electrical signals along giant nerve fibres. Proc. R. Soc. Lond. Ser. B Biol. Sci. 140, 177–183 (1952)CrossRefGoogle Scholar
  12. 12.
    Holmes, M.H.: Introduction to Perturbation Methods, vol. 20. Springer Science & Business Media, New York (2012)Google Scholar
  13. 13.
    Iyer, V., Mazhari, R., Winslow, R.L.: A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87(3), 1507–1525 (2004)CrossRefGoogle Scholar
  14. 14.
    Keener, J.P.: Invariant manifold reductions for Markovian ion channel dynamics. J. Math. Biol. 58(3), 447–457 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Keener, J.P., Sneyd, J.: Mathematical Physiology, vol. 1. Springer, New York (1998)zbMATHGoogle Scholar
  16. 16.
    Lagerstrom, P., Casten, R.: basic concepts underlying singular perturbation techniques. SIAM Rev. 14(1), 63–120 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    MATLAB: version 1.7.0_11 (R2013b). The MathWorks Inc., Natick, Massachusetts (2013)Google Scholar
  18. 18.
    Murthy, A., Islam, M.A., Bartocci, E., Cherry, E.M., Fenton, F.H., Glimm, J., Smolka, S.A., Grosu, R.: Approximate bisimulations for sodium channel dynamics. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 267–287. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Noel, V., Grigoriev, D., Vakulenko, S., Radulescu, O.: Tropical geometries and dynamics of biochemical networks application to hybrid cell cycle models. Electron. Notes Theoret. Comput. Sci. 284, 75–91 (2012). In: Feret, J., Levchenko, A. (eds.) Proceedings of the 2nd International Workshop on Static Analysis and Systems Biology (SASB 2011). ElsevierMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Noel, V., Grigoriev, D., Vakulenko, S., Radulescu, O.: Tropicalization and tropical equilibration of chemical reactions. In: Litvinov, G., Sergeev, S. (eds.) Tropical and Idempotent Mathematics and Applications, Contemporary Mathematics, vol. 616, pp. 261–277. American Mathematical Society (2014)Google Scholar
  21. 21.
    Radulescu, O., Gorban, A.N., Zinovyev, A., Noel, V.: Reduction of dynamical biochemical reactions networks in computational biology. Front. Genet. 3(131) (2012)Google Scholar
  22. 22.
    Radulescu, O., Swarup Samal, S., Naldi, A., Grigoriev, D., Weber, A.: Symbolic dynamics of biochemical pathways as finite states machines. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 104–120. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    Radulescu, O., Vakulenko, S., Grigoriev, D.: Model reduction of biochemical reactions networks by tropical analysis methods. Math. Model Nat. Phenom. 10(3), 124–138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Samal, S.S., Grigoriev, D., Fröhlich, H., Weber, A., Radulescu, O.: A geometric method for model reduction of biochemical networks with polynomial rate functions. Bull. Math. Biol. 77(12), 2180–2211 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Soliman, S., Fages, F., Radulescu, O.: A constraint solving approach to model reduction by tropical equilibration. Algorithms Mol. Biol. 9(1), 1 (2014)CrossRefGoogle Scholar
  26. 26.
    Suckley, R., Biktashev, V.N.: The asymptotic structure of the Hodgkin-Huxley equations. Int. J. Bifurcat. Chaos 13(12), 3805–3825 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tang, Y., Stephenson, J.L., Othmer, H.G.: Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys. J. 70(1), 246 (1996)CrossRefGoogle Scholar
  28. 28.
    Tikhonov, A.N.: Systems of differential equations containing small parameters in the derivatives. Matematicheskii Sbornik 73(3), 575–586 (1952)MathSciNetGoogle Scholar
  29. 29.
    Wechselberger, M., Mitry, J., Rinzel, J.: Canard theory and excitability. In: Kloeden, P.E., Pötzsche, C. (eds.) Nonautonomous Dynamical Systems in the Life Sciences. LIM, vol. 2102, pp. 89–132. Springer, Switzerland (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.DIMNP UMR CNRS 5235, University of MontpellierMontpellierFrance
  2. 2.Department of StatisticsUniversity of ChicagoChicagoUSA
  3. 3.Department of Ecology and Evolution, Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUSA
  4. 4.Department of Medicine and PediatricsUniversity of ChicagoChicagoUSA

Personalised recommendations