Advertisement

Formal Quantitative Analysis of Reaction Networks Using Chemical Organisation Theory

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)

Abstract

Chemical organisation theory is a framework developed to simplify the analysis of long-term behaviour of chemical systems. An organisation is a set of objects which are closed and self-maintaining. In this paper, we build on these ideas to develop novel techniques for formal quantitative analysis of chemical reaction networks, using discrete stochastic models represented as continuous-time Markov chains. We propose methods to identify organisations, to study quantitative properties regarding movement between these organisations and to construct an organisation-based coarse graining of the model that can be used to approximate and predict the behaviour of the original reaction network.

Keywords

Chemical Organization Theory Reaction Network Formal Quantitative Analysis Interval Markov Chains Strongly Connected Components (SCCs) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge support from the European Union through funding under FP7–ICT–2011–8 project HIERATIC (316705). We also thank the anonymous reviewers for their helpful and detailed comments.

References

  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)zbMATHGoogle Scholar
  3. 3.
    Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (2000)Google Scholar
  6. 6.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries-a review. Artif. Life 7(3), 225–275 (2001)CrossRefGoogle Scholar
  7. 7.
    Dittrich, P., di Fenizio, P.: Chemical organisation theory. Bull. Math. Biol. 69(4), 1199–1231 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Feinberg, M., Horn, F.J.M.: Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Eng. Sci. 29(3), 775–787 (1973)CrossRefGoogle Scholar
  9. 9.
    Fontana, W.: Algorithmic chemistry. In: Artificial Life II. Addison Wesley (1992)Google Scholar
  10. 10.
    Fontana, W., Buss, L.W.: “The arrival of the fittest”: toward a theory of biological organization. Bull. Math. Biol. 56(1), 1–64 (1994)zbMATHGoogle Scholar
  11. 11.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  12. 12.
    Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman and Hall, New York (1996)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2006)Google Scholar
  14. 14.
    Kreyssig, P., Wozar, C., Peter, S., Veloz, T., Ibrahim, B., Dittrich, P.: Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 30(17), 475–481 (2014)CrossRefGoogle Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wolf, V., Goel, R., Mateescu, M., Henzinger, T.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. J. 4, 42 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK
  2. 2.Institute of Computer ScienceFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations