Skip to main content

Formal Quantitative Analysis of Reaction Networks Using Chemical Organisation Theory

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9859))

Included in the following conference series:

Abstract

Chemical organisation theory is a framework developed to simplify the analysis of long-term behaviour of chemical systems. An organisation is a set of objects which are closed and self-maintaining. In this paper, we build on these ideas to develop novel techniques for formal quantitative analysis of chemical reaction networks, using discrete stochastic models represented as continuous-time Markov chains. We propose methods to identify organisations, to study quantitative properties regarding movement between these organisations and to construct an organisation-based coarse graining of the model that can be used to approximate and predict the behaviour of the original reaction network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)

    MATH  Google Scholar 

  3. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (2000)

    Google Scholar 

  6. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries-a review. Artif. Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  7. Dittrich, P., di Fenizio, P.: Chemical organisation theory. Bull. Math. Biol. 69(4), 1199–1231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feinberg, M., Horn, F.J.M.: Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Eng. Sci. 29(3), 775–787 (1973)

    Article  Google Scholar 

  9. Fontana, W.: Algorithmic chemistry. In: Artificial Life II. Addison Wesley (1992)

    Google Scholar 

  10. Fontana, W., Buss, L.W.: “The arrival of the fittest”: toward a theory of biological organization. Bull. Math. Biol. 56(1), 1–64 (1994)

    MATH  Google Scholar 

  11. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  12. Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman and Hall, New York (1996)

    Book  MATH  Google Scholar 

  13. Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2006)

    Google Scholar 

  14. Kreyssig, P., Wozar, C., Peter, S., Veloz, T., Ibrahim, B., Dittrich, P.: Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 30(17), 475–481 (2014)

    Article  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wolf, V., Goel, R., Mateescu, M., Henzinger, T.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. J. 4, 42 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Union through funding under FP7–ICT–2011–8 project HIERATIC (316705). We also thank the anonymous reviewers for their helpful and detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Parker .

Editor information

Editors and Affiliations

APPENDIX: Supplementary Details for Examples 5 and 6

APPENDIX: Supplementary Details for Examples 5 and 6

Fig. 5.
figure 5

Example 5 in the PRISM modelling language

Fig. 6.
figure 6

Example 5: CTMC model with 4 SCCs and 1 BSCC

Fig. 7.
figure 7

CTMC for the reaction network from Example 6, with 28 SCCs and 6 BSCCs.

Fig. 8.
figure 8

Transition probabilities (bounds/averages) between all SCCs of the CTMC for Example 6 and expected leaving times.

Fig. 9.
figure 9

Transition probabilities (bounds and average) between good SCCs for Example 6 and the expected time to leave them.

Fig. 10.
figure 10

Example 6: transition probabilities in bounds among the lattice of molecules

Fig. 11.
figure 11

Organisation dynamics predication via master equation simulation over the average coarse-grained model(left) and the original model(right) of Example 6, for \(N_{\max }=10\) with rates: \(\sharp a * \sharp b\), \(\sharp b * \sharp c\), \(\sharp c \), \(\sharp b * \sharp d\), \(\sharp b * \sharp b\), \(\sharp c \), \(\sharp d \) for each reaction rule respectively. (Color figure online)

Fig. 12.
figure 12

Organisation dynamics predication via master equation simulation over the average coarse-grained model(left) and the original model(right) of Example 6, for \(N_{\max }=10\) with rates: \(\sharp a * \sharp b\), \(\sharp b * \sharp c\), \(\sharp c * \sharp c\), \(\sharp b * \sharp d\), \(\sharp b * \sharp b\), \(\sharp c * \sharp c\), \(\sharp d * \sharp d\) for each reaction rule respectively. (Color figure online)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mu, C., Dittrich, P., Parker, D., Rowe, J.E. (2016). Formal Quantitative Analysis of Reaction Networks Using Chemical Organisation Theory. In: Bartocci, E., Lio, P., Paoletti, N. (eds) Computational Methods in Systems Biology. CMSB 2016. Lecture Notes in Computer Science(), vol 9859. Springer, Cham. https://doi.org/10.1007/978-3-319-45177-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45177-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45176-3

  • Online ISBN: 978-3-319-45177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics