Advertisement

Autonomous and Adaptive Control of Populations of Bacteria Through Environment Regulation

  • Chieh LoEmail author
  • Radu Marculescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)

Abstract

The proliferation of antibiotic-resistant bacteria poses a significant threat to humans health and welfare. To reduce the bacterial pathogenesis and growth, we propose an autonomous biological controller that can adaptively generate quorum sensing inhibitors and control the iron availability in the environment. As the main theoretical contribution, we provide a detailed analysis of our proposed controller that includes model calibration, system response, and inhibitor effectiveness. We also formulate a constrained optimization problem to choose the values of the biological parameters of the proposed controller under given environment constraints. Finally, we validate our results via detailed population-level simulations and demonstrate that bacteria virulence can be significantly reduced without developing drug resistance or inducing selective pressure among bacteria wild type and mutants. This work represents a first step towards a paradigm change in reducing bacterial pathogenesis via controlling the dynamics of the cell-cell communication through environment regulation.

Keywords

Quorum sensing Biological controller Pathogen Environment regulation Cell-cell communication 

References

  1. 1.
    Arpino, J., et al.: Tuning the dials of synthetic biology. Microbiology 159(7), 1236–1253 (2013)CrossRefGoogle Scholar
  2. 2.
    Balasubramanian, D., et al.: A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 41(1), 1–20 (2013)CrossRefGoogle Scholar
  3. 3.
    Banin, E., et al.: Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102(31), 11076–11081 (2005)CrossRefGoogle Scholar
  4. 4.
    Bassler, B.L., Losick, R.: Bacterially speaking. Cell 125(2), 237–246 (2006)CrossRefGoogle Scholar
  5. 5.
    Bredenbruch, F., et al.: The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ. Microbiol. 8(8), 1318–1329 (2006)CrossRefGoogle Scholar
  6. 6.
    Cheng, A.A., et al.: Enhanced killing of antibiotic-resistant bacteria enabled by massively parallel combinatorial genetics. Proc. Natl. Acad. Sci. USA 111(34), 12462–12467 (2014)CrossRefGoogle Scholar
  7. 7.
    Diggle, S.P., et al.: The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem. Biol. 14(1), 87–96 (2007)CrossRefGoogle Scholar
  8. 8.
    Fagerlind, M.G., et al.: Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosyst. 80(2), 201–213 (2005)CrossRefGoogle Scholar
  9. 9.
    Fischbach, M.A., et al.: Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5(179), 179ps7 (2013)CrossRefGoogle Scholar
  10. 10.
    Häussler, S., Becker, T.: The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog. 4(9), e1000166 (2008)CrossRefGoogle Scholar
  11. 11.
    Hazan, R., He, J., Xiao, G., Dekimpe, V., Apidianakis, Y., Lesic, B., Astrakas, C., Déziel, E., Lépine, F., Rahme, L.G.: Homeostatic interplay between bacterial cell-cell signaling and iron in virulence. PLoS Pathog. 6(3), e1000810 (2010)CrossRefGoogle Scholar
  12. 12.
    Kim, E.J., Wang, W., Deckwer, W.D., Zeng, A.P.: Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151(4), 1127–1138 (2005). (Reading, England)CrossRefGoogle Scholar
  13. 13.
    Melke, P., Sahlin, P., Levchenko, A., Jönsson, H.: A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput. Biol. 6(6), e1000819 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949)CrossRefGoogle Scholar
  15. 15.
    Oglesby, A.G., Farrow, J.M., Lee, J.H., Tomaras, A.P., Greenberg, E.P., Pesci, E.C., Vasil, M.L.: The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283(23), 15558–15567 (2008)CrossRefGoogle Scholar
  16. 16.
    Oglesby-Sherrouse, A.G., Djapgne, L., Nguyen, A.T., Vasil, A.I., Vasil, M.L.: The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa. Pathog. Dis. 70(3), 307–320 (2014)CrossRefGoogle Scholar
  17. 17.
    Park, S., et al.: The role of AiiA, a quorum-quenching enzyme from bacillus thuringiensis on the rhizosphere competence. J. Microbiol. Biotechnol. 18(9), 1518–1521 (2008)Google Scholar
  18. 18.
    Schaadt, N.S., Steinbach, A., Hartmann, R.W., Helms, V.: Rule-based regulatory and metabolic model for Quorum sensing in P. aeruginosa. BMC Syst. Biol. 7, 81 (2013)CrossRefGoogle Scholar
  19. 19.
    Vasil, M., Ochsner, U.: The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol. 34, 399–413 (1999)CrossRefGoogle Scholar
  20. 20.
    Voigt, C.A.: Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17(5), 548–557 (2006)CrossRefGoogle Scholar
  21. 21.
    Wei, G., et al.: Efficient modeling and simulation of bacteria-based nanonetworks with BNSim. IEEE J. Sel. Areas Commun. 31(12), 868–878 (2013)CrossRefGoogle Scholar
  22. 22.
    Whiteley, M.: Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 96(24), 13904–13909 (1999)CrossRefGoogle Scholar
  23. 23.
    Williams, J.W., Cui, X., Levchenko, A., Stevens, A.M.: Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Mol. Syst. Biol. 4(234), 234 (2008). (Track II)Google Scholar
  24. 24.
    Withers, H., Swift, S., Williams, P.: Quorum sensing as an integral component of gene regulatory networks in gram-negative bacteria. Curr. Opin. Microbiol. 4, 186–193 (2001)CrossRefGoogle Scholar
  25. 25.
    Yang, L., Barken, K.B., Skindersoe, M.E., Christensen, A.B., Givskov, M., Tolker-Nielsen, T.: Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(5), 1318–1328 (2007)CrossRefGoogle Scholar
  26. 26.
    Yosef, I., Manor, M., Kiro, R., Qimron, U.: Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA 112(23), 7267–7272 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations