Skip to main content

Multi-Task Learning for Interpretation of Brain Decoding Models

  • Conference paper
  • First Online:
Machine Learning and Interpretation in Neuroimaging (MLINI 2013, MLINI 2014)

Abstract

Improving the interpretability of multivariate models is of primary interest for many neuroimaging studies. In this study, we present an application of multi-task learning (MTL) to enhance the interpretability of linear classifiers once applied to neuroimaging data. To attain our goal, we propose to divide the data into spatial fractions and define the temporal data of each spatial unit as a task in MTL paradigm. Our result on magnetoencephalography (MEG) data reveals preliminary evidence that, (1) dividing the brain recordings into spatial fractions based on spatial units of data and (2) considering each spatial fraction as a task, are two factors that provide more stability and consequently more interpretability for brain decoding models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/.

  2. 2.

    The competition data are available at http://www.kaggle.com/c/decoding-the-human-brain.

  3. 3.

    The preprocessing scripts in python and MATLAB are available at: https://github.com/FBK-NILab/DecMeg2014.

References

  1. Afshin-Pour, B., Soltanian-Zadeh, H., Hossein-Zadeh, G.A., Grady, C.L., Strother, S.C.: A mutual information-based metric for evaluation of fMRI data-processing approaches. Hum. Brain Mapp. 32(5), 699–715 (2011)

    Article  Google Scholar 

  2. Ben-David, S., Gehrke, J., Schuller, R.: A theoretical framework for learning from a pool of disparate data sources. In: International Conference on Knowledge Discovery and Data Mining, pp. 443–449. ACM (2002)

    Google Scholar 

  3. de Brecht, M., Yamagishi, N.: Combining sparseness and smoothness improves classification accuracy and interpretability. NeuroImage 60(2), 1550–1561 (2012)

    Article  Google Scholar 

  4. Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009)

    Article  Google Scholar 

  5. Chen, X., Kim, S., Lin, Q., Carbonell, J.G., Xing, E.P.: Graph-structured multi-task regression and an efficient optimization method for general fused lasso. arXiv preprint arXiv:1005.3579 (2010)

  6. Conroy, B.R., Walz, J.M., Sajda, P.: Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models. PLoS ONE 8(11), e79271 (2013)

    Article  Google Scholar 

  7. Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)

    Article  Google Scholar 

  8. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117. ACM (2004)

    Google Scholar 

  9. van Gerven, M., Hesse, C., Jensen, O., Heskes, T.: Interpreting single trial data using groupwise regularisation. NeuroImage 46(3), 665–676 (2009)

    Article  Google Scholar 

  10. Gramfort, A., Thirion, B., Varoquaux, G.: Identifying predictive regions from fMRI with TV-L1 prior. In: 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 17–20. IEEE (2013)

    Google Scholar 

  11. Groppe, D.M., Urbach, T.P., Kutas, M.: Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology 48(12), 1711–1725 (2011)

    Article  Google Scholar 

  12. Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E.: Interpretable whole-brain prediction analysis with graphnet. NeuroImage 72, 304–321 (2013)

    Article  Google Scholar 

  13. Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D., Blankertz, B., Bießmann, F.: On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110 (2013)

    Google Scholar 

  14. Haufe, S., Meinecke, F., Gorgen, K., Dahne, S., Haynes, J.D., Blankertz, B., Biessmann, F.: Parameter interpretation, regularization and source localization in multivariate linear models. In: 2014 International Workshop on Pattern Recognition in Neuroimaging, pp. 1–4. IEEE (2014)

    Google Scholar 

  15. Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 76 (2011)

    Article  Google Scholar 

  16. Kia, S.M.: Mass-univariate hypothesis testing on MEEG data using cross-validation. Master’s thesis, University of Trento (2013)

    Google Scholar 

  17. Maris, E.: Statistical testing in electrophysiological studies. Psychophysiology 49(4), 549–565 (2012)

    Article  MathSciNet  Google Scholar 

  18. Maris, E., Oostenveld, R.: Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164(1), 177–190 (2007)

    Article  Google Scholar 

  19. Olivetti, E., Kia, S.M., Avesani, P.: MEG decoding across subjects. In: 2014 International Workshop on Pattern Recognition in Neuroimaging (2014)

    Google Scholar 

  20. Olivetti, E., Kia, S.M., Avesani, P.: Sensor-level maps with the kernel two-sample test. In: 2014 International Workshop on Pattern Recognition in Neuroimaging, pp. 1–4. IEEE (2014)

    Google Scholar 

  21. Olivetti, E., Mognon, A., Greiner, S., Avesani, P.: Brain decoding: biases in error estimation. In: 2010 First Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging (WBD), pp. 40–43. IEEE (2010)

    Google Scholar 

  22. Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., Strother, S.C.: Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recogn. 45(6), 2085–2100 (2012)

    Article  Google Scholar 

  23. Rish, I., Cecchi, G.A., Lozano, A., Niculescu-Mizil, A.: Practical Applications of Sparse Modeling. MIT Press, Cambridge (2014)

    Google Scholar 

  24. Strother, S.C., Rasmussen, P.M., Churchill, N.W., Hansen, K.: Stability and Reproducibility in fMRI Analysis. Springer, New York (2014)

    Google Scholar 

  25. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Valverde-Albacete, F.J., Peláez-Moreno, C.: 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox. PLoS ONE 9(1), e84217 (2014)

    Article  Google Scholar 

  27. Varoquaux, G., Gramfort, A., Thirion, B.: Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. arXiv preprint arXiv:1206.6447 (2012)

  28. Xing, E.P., Kolar, M., Kim, S., Chen, X.: High-dimensional sparse structured input-output models, with applications to GWAS. In: Practical Applications of Sparse Modeling, p. 37 (2014)

    Google Scholar 

  29. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via structured multi-task sparse learning. Int. J. Comput. Vis. 101(2), 367–383 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zhou, J., Chen, J., Ye, J.: MALSAR: Multi-task Learning via Structural Regularization. Arizona State University (2011). http://www.public.asu.edu/jye02/Software/MALSAR

  32. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.: Ser. B 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mostafa Kia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kia, S.M., Vega-Pons, S., Olivetti, E., Avesani, P. (2016). Multi-Task Learning for Interpretation of Brain Decoding Models. In: Rish, I., Langs, G., Wehbe, L., Cecchi, G., Chang, Km., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. MLINI MLINI 2013 2014. Lecture Notes in Computer Science(), vol 9444. Springer, Cham. https://doi.org/10.1007/978-3-319-45174-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45174-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45173-2

  • Online ISBN: 978-3-319-45174-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics