A Bayesian Network for the Cognitive Diagnosis of Deductive Reasoning

  • Ange Tato
  • Roger Nkambou
  • Janie Brisson
  • Clauvice Kenfack
  • Serge Robert
  • Pamela Kissok
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9891)

Abstract

In our previous works, we presented Logic-Muse as an ITS that helps improve logical reasoning skills in multiple contexts. All its three main components (the learner, tutor and expert models) have been developed while relying on the help of experts and on important work in the field of reasoning and computer science. The main purpose of this paper is to present and assess the Bayesian Network (that allows real time diagnosis and modeling of the learner’s state of knowledge) implemented in the learner component. We demonstrate the prediction and the adaptive capabilities for our learner model by using data mining techniques on data from 71 students. We believe this work will help the research community in building and assessing a BN in an ITS that teach logical reasoning.

Keywords

Bayesian network Deductive reasoning Learner model Intelligent tutoring system 

References

  1. 1.
    Conati, C., Gertner, A., Vanlehn, K.: Using Bayesian networks to manage uncertainty in student modeling. User Model. User-Adap. Inter. 12(4), 371–417 (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Conati, C., Cerri, Stephano A.: Bayesian student modeling. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. Studies in Computational Intelligence, vol. 308, pp. 281–299. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    De La Torre, J.: A cognitive diagnosis model for cognitively based multiple-choice options. Appl. Psychol. Measur. 33(3), 163–183 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lesta, L., Yacef, K.: An intelligent teaching assistant system for logic. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 421–431. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Markovits, H.: On the road toward formal reasoning: Reasoning with factual causal and contrary-to-fact causal premises during early adolescence. J. Exp. Child Psychol. 128, 37–51 (2014)CrossRefGoogle Scholar
  6. 6.
    Nkambou, R., Brisson, J., Kenfack, C., Robert, S., Kissok, P., Tato, A.: Towards an intelligent tutoring system for logical reasoning in multiple contexts. In: Conole, G., Klobucar, T., Rensing, C., Konert, J., Lavoué, E. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 460–466. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24258-3_40 Google Scholar
  7. 7.
    Robitzsch, A., et al.: CDM: Cognitive diagnosis modeling. R Package version, 3 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ange Tato
    • 1
  • Roger Nkambou
    • 1
  • Janie Brisson
    • 1
  • Clauvice Kenfack
    • 1
  • Serge Robert
    • 1
  • Pamela Kissok
    • 1
  1. 1.Université du Québec à MontréalMontréalCanada

Personalised recommendations