Advertisement

Big Data and Cloud Computing: A Survey of the State-of-the-Art and Research Challenges

  • Georgios Skourletopoulos
  • Constandinos X. Mavromoustakis
  • George Mastorakis
  • Jordi Mongay Batalla
  • Ciprian Dobre
  • Spyros Panagiotakis
  • Evangelos Pallis
Chapter
Part of the Studies in Big Data book series (SBD, volume 22)

Abstract

The proliferation of data warehouses and the rise of multimedia, social media and the Internet of Things (IoT) generate an increasing volume of structured, semi-structured and unstructured data. Towards the investigation of these large volumes of data, big data and data analytics have become emerging research fields, attracting the attention of the academia, industry and governments. Researchers, entrepreneurs, decision makers and problem solvers view ‘big data’ as the tool to revolutionize various industries and sectors, such as business, healthcare, retail, research, education and public administration. In this context, this survey chapter presents a review of the current big data research, exploring applications, opportunities and challenges, as well as the state-of-the-art techniques and underlying models that exploit cloud computing technologies, such as the big data-as-a-service (BDaaS) or analytics-as-a-service (AaaS).

Keywords

Big data Data analytics Data management Big data-as-a-service Analytics-as-a-service Business intelligence Lease storage Cloud computing Cost-benefit analysis model 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments and insights on the manuscript. Their suggestions have contributed greatly to the high quality and improvement of this article. The authors would also like to acknowledge networking support by the ICT COST Action IC1303: Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE) and the ICT COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications” (cHiPSet).

References

  1. 1.
    Agrawal, D., Das, S., El Abbadi, A.: Big data and cloud computing: current state and future opportunities. In: Proceedings of the 14th International Conference on Extending Database Technology (EDBT/ICDT’11), pp. 530–533 (2011)Google Scholar
  2. 2.
    Amazon Web Services, Inc.: Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2 (2015). Accessed 18 Oct 2015
  3. 3.
    Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A.S., Buyya, R.: Big data computing and clouds: trends and future directions. J. Parallel Distrib. Comput. 79–80, 3–15 (2015)CrossRefGoogle Scholar
  4. 4.
    Batalla, J.M., Kantor, M., Mavromoustakis, C.X., Skourletopoulos, G., Mastorakis, G.: A novel methodology for efficient throughput evaluation in virtualized routers. In: Proceedings of the IEEE International Conference on Communications (ICC 2015)—Communications Software, Services and Multimedia Applications Symposium (CSSMA), London, UK, pp. 6899–6905 (2015)Google Scholar
  5. 5.
    Batalla, J.M., Mavromoustakis, C.X., Mastorakis, G., Sienkiewicz, K.: On the track of 5G radio access network for IoT wireless spectrum sharing in device positioning applications. In: Internet of Things (IoT) in 5G Mobile Technologies, pp. 25–35. Springer International Publishing (2016)Google Scholar
  6. 6.
    Batalla, J.M., Mastorakis, G., Mavromoustakis, C.X., Zurek, J.: On cohabitating networking technologies with common wireless access for Home Automation Systems purposes. Special Issue on “Enabling Wireless Communication and Networking Technologies for the Internet of Things”. IEEE Wirel. Commun. Mag. (2016)Google Scholar
  7. 7.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25, 599–616 (2009)CrossRefGoogle Scholar
  8. 8.
    Buyya, R., Ranjan, R., Calheiros, R.N.: Intercloud: utility-oriented federation of cloud computing environments for scaling of application services. Algorithms Arch. Parallel Process. 6081, 13–31 (2010)Google Scholar
  9. 9.
    Chen, C.L.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36, 1165–1188 (2012)Google Scholar
  11. 11.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mobile Netw. Appl. 19, 171–209 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ciobanu, R.-I., Marin, R.-C., Dobre, C., Cristea, V., Mavromoustakis, C.X., Mastorakis, G.: Opportunistic dissemination using context-based data aggregation over interest spaces. In: Proceedings of IEEE International Conference on Communications 2015 (IEEE ICC 2015), London, UK, 08–12 June 2015Google Scholar
  13. 13.
    De Assunção, M.D., Di Costanzo, A., Buyya, R.: A cost-benefit analysis of using cloud computing to extend the capacity of clusters. Clust. Comput. 13, 335–347 (2010)CrossRefGoogle Scholar
  14. 14.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  15. 15.
    Demirkan, H., Delen, D.: Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud. Decis. Support Syst. 55, 412–421 (2013)CrossRefGoogle Scholar
  16. 16.
    Goleva, R., Stainov, R., Wagenknecht-Dimitrova, D., Mirtchev, S., Atamian, D., Mavromoustakis, C.X., Mastorakis, G., Dobre, C., Savov, A., Draganov, P.: Data and traffic models in 5G network. In: Internet of Things (IoT) in 5G Mobile Technologies, pp. 485–499. Springer International Publishing (2016)Google Scholar
  17. 17.
    Google, Inc.: App engine—platform as a service. https://cloud.google.com/appengine (2015). Accessed 18 Oct 2015
  18. 18.
    Hadjioannou, V., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Kopanakis, I., Perakakis, E., Panagiotakis, S.: Security in smart grids and smart spaces for smooth IoT deployment in 5G. In: Internet of Things (IoT) in 5G Mobile Technologies, pp. 371–397. Springer International Publishing (2016)Google Scholar
  19. 19.
    Han, J., Haihong, E., Le, G., Du, J.: Survey on NoSQL database. In: Proceedings of the 2011 6th International Conference on Pervasive Computing and Applications (ICPCA), Port Elizabeth, pp. 363–366 (2011)Google Scholar
  20. 20.
    Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)CrossRefGoogle Scholar
  21. 21.
    IBM Corporation: IBM big data & analytics hub: the four V’s of big data. http://www.ibmbigdatahub.com/infographic/four-vs-big-data (2014). Accessed 18 Oct 2015
  22. 22.
    IBM Corporation: IBM social media analytics software as a service. http://www-03.ibm.com/software/products/en/social-media-analytics-saas (2015a). Accessed 18 October 2015
  23. 23.
    IBM Corporation: IBM bluemix. http://www.ibm.com/cloud-computing/bluemix (2015b). Accessed 18 Oct 2015
  24. 24.
    Informatica Corporation: Making sense of big data. https://marketplace.informatica.com/solutions/making_sense_of_big_data (2015). Accessed 18 Oct 2015
  25. 25.
    Inmon, W.H.: Building the Data Warehouse. Wiley (2005)Google Scholar
  26. 26.
    Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-benefit analysis of cloud computing versus desktop grids. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2009), Rome, pp. 1–12 (2009)Google Scholar
  27. 27.
    Kryftis, Y., Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Pallis, E., Skourletopoulos, G.: Resource usage prediction for optimal and balanced provision of multimedia services. Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD 2014), pp. 255–259. Greece, Athens (2014)CrossRefGoogle Scholar
  28. 28.
    Kryftis, Y., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Batalla, J.M., Rodrigues, J., Dobre, C., Kormentzas, G.: Resource usage prediction algorithms for optimal selection of multimedia content delivery methods. In: Proceedings of IEEE International Conference on Communications 2015 (IEEE ICC 2015), London, UK, 08–12 June 2015Google Scholar
  29. 29.
    Kryftis, Y., Mastorakis, G., Mavromoustakis, C.X., Batalla, J.M., Rodrigues, J., Drobre, C.: Resource usage prediction models for optimal multimedia content provision. IEEE Syst. J. (2016)Google Scholar
  30. 30.
    Li, X., Li, Y., Liu, T., Qiu, J., Wang, F.: The method and tool of cost analysis for cloud computing. In: 2009 IEEE International Conference on Cloud Computing (CLOUD’09), Bangalore, pp. 93–100 (2009)Google Scholar
  31. 31.
    Markakis, E., Mastorakis, G., Negru, D., Pallis, E., Mavromoustakis, C.X., Bourdena, A.: A context-aware system for efficient peer-to-peer content provision. In: Dobre, C., Xhafa, F. (eds.) Pervasive Computing: Next Generation Platforms for Intelligent Data Collection. Elsevier (2016)Google Scholar
  32. 32.
    Mastorakis, G., Markakis, E., Pallis, E., Mavromoustakis, C.X., Skourletopoulos, G.: Virtual network functions exploitation through a prototype resource management framework. Proceedings of the 2014 IEEE 6th International Conference on Telecommunications and Multimedia (TEMU 2014), pp. 24–28. Heraklion, Crete, Greece (2014)Google Scholar
  33. 33.
    Mavromoustakis, C.X., Dimitriou, C., Mastorakis, G., Pallis, E.: Real-time performance evaluation of F-BTD scheme for optimized QoS energy conservation in wireless devices. In: Proceedings of IEEE Globecom 2013, 2nd IEEE Workshop on Quality of Experience for Multimedia Communications (QoEMC2013), Atlanta, GA, USA, 09–13 Dec 2013Google Scholar
  34. 34.
    Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E., Kormentzas, G., Rodrigues, J.J.P.C.: Context-oriented opportunistic cloud offload processing for energy conservation in wireless devices. Proceedings of the IEEE Global Communications Conference (GLOBECOM 2014)—The Second International Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA), pp. 24–30. Austin, Texas, USA (2014a)Google Scholar
  35. 35.
    Mavromoustakis, C.X., Andreou, A., Mastorakis, G., Bourdena, A., Batalla, J.M., Dobre, C.: On the performance evaluation of a novel offloading-based energy conservation mechanism for wireless devices. In: Proceedings of the 6th International Conference on Mobile Networks and Management (MONAMI 2014), 22–24 Sept 2014. Wuerzburg, Germany (2014b)Google Scholar
  36. 36.
    Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E., Kormentzas, G., Dimitriou, C.: Joint energy and delay-aware scheme for 5G mobile cognitive radio networks. In: Proceedings of IEEE GlobeCom 2014, Symposium on Selected Areas in Communications: GC14 SAC Green Communication Systems and Networks, Austin, TX, USA (2014c)Google Scholar
  37. 37.
    McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J., Barton, D., Court, D.: Big data: the management revolution. Harv. Bus. Rev. 59–68 (2012)Google Scholar
  38. 38.
    Microsoft Corporation: Microsoft azure: cloud computing platform and services. https://azure.microsoft.com (2015). Accessed 18 Oct 2015
  39. 39.
    Papadopoulos, M., Mavromoustakis, C.X., Skourletopoulos, G., Mastorakis, G., Pallis, E.: Performance analysis of reactive routing protocols in mobile ad hoc networks. Proceedings of the 2014 IEEE 6th International Conference on Telecommunications and Multimedia (TEMU 2014), pp. 104–110. Heraklion, Crete, Greece (2014)Google Scholar
  40. 40.
    Park, K., Nguyen, M.C., Won, H.: Web-based collaborative big data analytics on big data as a service platform. In: Proceedings of the 2015 17th International Conference on Advanced Communication Technology (ICACT), Seoul, pp. 564–567 (2015)Google Scholar
  41. 41.
    Pop, C., Ciobanu, R., Marin, R.C., Dobre, C., Mavromoustakis, C.X., Mastorakis, G., Rodrigues, J.J.P.C.: Data dissemination in vehicular networks using context spaces. In: IEEE GLOBECOM 2015, Fourth International Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA), 6–10 Dec 2015Google Scholar
  42. 42.
    Posnakides, D., Mavromoustakis, C.X., Skourletopoulos, G., Mastorakis, G., Pallis, E., Batalla, J.M.: Performance analysis of a rate-adaptive bandwidth allocation scheme in 5G mobile networks. Proceedings of the 20th IEEE Symposium on Computers and Communications (ISCC 2015)—The 2nd IEEE International Workshop on A 5G Wireless Odyssey:2020, pp. 955–961. Larnaca, Cyprus (2015)Google Scholar
  43. 43.
    Skourletopoulos, G., Xanthoudakis, A.: Developing a business plan for new technologies: application and implementation opportunities of the interactive digital (iDTV) and internet protocol (IPTV) television as an advertising tool. Bachelor’s Degree Dissertation, Technological Educational Institute of Crete, Greece (2012)Google Scholar
  44. 44.
    Skourletopoulos, G.: Researching and quantifying the technical debt in cloud software engineering. Master’s Degree Dissertation, University of Birmingham, UK (2013)Google Scholar
  45. 45.
    Skourletopoulos, G., Bahsoon, R., Mavromoustakis, C.X., Mastorakis, G., Pallis, E.: Predicting and quantifying the technical debt in cloud software engineering. Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD 2014), pp. 36–40. Greece, Athens (2014)CrossRefGoogle Scholar
  46. 46.
    Skourletopoulos, G., Bahsoon, R., Mavromoustakis, C.X., Mastorakis, G.: The technical debt in cloud software engineering: a prediction-based and quantification approach. In: Mastorakis, G., Mavromoustakis, C.X., Pallis, E. (eds.) Resource Management of Mobile Cloud Computing Networks and Environments, 1st edn, pp. 24–42. IGI Global, Hershey, PA (2015)Google Scholar
  47. 47.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Rodrigues, J.J.P.C., Chatzimisios, P., Batalla, J.M.: A fluctuation-based modelling approach to quantification of the technical debt on mobile cloud-based service level. In: Proceedings of the IEEE Global Communications Conference (GLOBECOM 2015)—The Fourth IEEE International Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA), San Diego, California, USA (2015b)Google Scholar
  48. 48.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Chatzimisios, P., Batalla, J.M.: Towards the evaluation of a big data-as-a-service model: a decision theoretic approach. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM 2016)—First IEEE International Workshop on Big Data Sciences, Technologies and Applications (BDSTA), San Francisco, California, USA (2016a)Google Scholar
  49. 49.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Sahalos, J.N.: An evaluation of cloud-based mobile services with limited capacity: a linear approach. Soft Comput. (2016). doi: 10.1007/s00500-016-2083-4 Google Scholar
  50. 50.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Batalla, J.M., Kormentzas, G.: Quantifying and evaluating the technical debt on mobile cloud-based service level. In: Proceedings of the IEEE International Conference on Communications (ICC 2016)—Communication QoS, Reliability and Modeling (CQRM) Symposium, Kuala Lumpur, Malaysia (2016c)Google Scholar
  51. 51.
    Sun, X., Gao, B., Fan, L., An, W.: A cost-effective approach to delivering analytics as a service. Proceedings of the 2012 IEEE 19th International Conference on Web Services (ICWS), pp. 512–519. Honolulu, HI (2012)CrossRefGoogle Scholar
  52. 52.
    Talia, D.: Clouds for scalable big data analytics. IEEE Comput. Sci. 98–101 (2013)Google Scholar
  53. 53.
    The Apache Software Foundation: Apache hadoop. http://hadoop.apache.org (2014). Accessed 18 Oct 2015
  54. 54.
    Vakintis, I., Panagiotakis, S., Mastorakis, G., Mavromoustakis, C.X.: Evaluation of a Web Crowd-sensing IoT ecosystem providing big data analysis. In: Pop, F., Kołodziej, J., di Martino, B. (eds.) Resource Management for Big Data Platforms and Applications. Studies in Big Data Springer International Publishing, 2017Google Scholar
  55. 55.
    Vaquero, L.M., Celorio, A., Cuadrado, F., Cuevas, R.: Deploying large-scale datasets on-demand in the cloud: treats and tricks on data distribution. IEEE Trans. Cloud Comput. 3, 132–144 (2015)CrossRefGoogle Scholar
  56. 56.
    Ye, F., Wang, Z., Zhou, F., Wang, Y., Zhou, Y.: Cloud-based big data mining and analyzing services platform integrating R. In: Proceedings of the 2013 International Conference on Advanced Cloud and Big Data (CBD), Nanjing, pp. 147–151 (2013)Google Scholar
  57. 57.
    Yeo, C.S., Venugopal, S., Chu, X., Buyya, R.: Autonomic metered pricing for a utility computing service. Future Gener. Comput. Syst. 26, 1368–1380 (2010)CrossRefGoogle Scholar
  58. 58.
    Zhao, Y., Calheiros, R.N., Gange, G., Ramamohanarao, K., Buyya, R.: SLA-based resource scheduling for big data analytics as a service in cloud computing environments. In: Proceedings of the 2015 44th International Conference on Parallel Processing (ICPP), Beijing, pp. 510–519 (2015)Google Scholar
  59. 59.
    Zheng, Z., Zhu, J., Lyu, M.R.: Service-generated big data and big data-as-a-service: an overview. Proceedings of the 2013 IEEE International Congress on Big Data (BigData Congress), pp. 403–410. Santa Clara, California (2013)CrossRefGoogle Scholar
  60. 60.
    Zulkernine, F., Martin, P., Zou, Y., Bauer, M., Gwadry-Shridhar, F., Aboulnaga, A.: Towards cloud-based analytics-as-a-service (CLAaaS) for big data analytics in the cloud. Proceedings of the 2013 IEEE International Congress on Big Data (BigData Congress), pp. 62–69. Santa Clara, California (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Georgios Skourletopoulos
    • 1
  • Constandinos X. Mavromoustakis
    • 1
  • George Mastorakis
    • 2
  • Jordi Mongay Batalla
    • 3
  • Ciprian Dobre
    • 4
  • Spyros Panagiotakis
    • 2
  • Evangelos Pallis
    • 2
  1. 1.Mobile Systems (MoSys) Laboratory, Department of Computer ScienceUniversity of NicosiaNicosiaCyprus
  2. 2.Department of Informatics EngineeringTechnological Educational Institute of CreteHeraklionGreece
  3. 3.Warsaw University of TechnologyWarsawPoland
  4. 4.Faculty of Automatic Control and Computers, Department of Computer ScienceUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations