Advertisement

Handling Big Data in the Era of Internet of Things (IoT)

  • Koralia Papadokostaki
  • George Mastorakis
  • Spyros Panagiotakis
  • Constandinos X. Mavromoustakis
  • Ciprian Dobre
  • Jordi Mongay Batalla
Chapter
Part of the Studies in Big Data book series (SBD, volume 22)

Abstract

In the emerging 5G mobile computing environments, the need for cutting edge technologies regarding data transmission, storage and processing will be more critical than ever. In addition, handling of Big Data that is produced by Internet of Things (IoT) devices and extracting value out of it, is a real challenge for scientists and markets, towards providing extra profit to the society. In this context, this chapter aims to shortly present the correlation between Internet of Things and the expansion of Big Data. At first, a short reference to the evolution of IoT and Big Data is provided and their features are then introduced. In addition, the lifecycle of Big Data in IoT—from capturing to storage and analysis—is shortly described. Finally, two different approaches for the implementation of Big Data are presented, as well as issues in privacy and security are addressed.

Keywords

Internet of things (IoT) Big data Data storage Privacy Cloud computing Wearables RFIDs WSNs 

References

  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Fut. Gen. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  3. 3.
    Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., Jubert, I.S., Mazura, M., Harrison, M., Eisenhauer, M., Doody, P.: Internet of things strategic research roadmap. In: Internet of Things-Global Technological and Societal Trends, pp. 9–52 (2011)Google Scholar
  4. 4.
    Kitchin, R.: The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)CrossRefGoogle Scholar
  5. 5.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service model for smart cities supported by internet of things. Trans. Emerg. Telecommun. Technol. 25(1), 81–93 (2014)CrossRefGoogle Scholar
  6. 6.
    Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things architecture, possible applications and key challenges. In: 2012 10th International Conference on Frontiers of Information Technology (FIT), pp. 257–260. IEEE (2012)Google Scholar
  7. 7.
    Domingo, M.C.: An overview of the Internet of Things for people with disabilities. J. Netw. Comput. Appl. 35(2), 584–596 (2012)CrossRefGoogle Scholar
  8. 8.
    Bandyopadhyay, D., Sen, J.: Internet of things: applications and challenges in technology and standardization. Wirel. Pers. Commun. 58(1), 49–69 (2011)CrossRefGoogle Scholar
  9. 9.
    Wareable: Connected cooking: the best smart kitchen devices and appliances. http://www.wareable.com/smart-home/best-smart-kitchen-devices. Accessed 20 April 2016
  10. 10.
    Wareable: 2016 preview: how wearables are going to take over your life. http://www.wareable.com/wearable-tech/2016-how-wearables-will-take-over-your-life-2096. Accessed 20 April 2016
  11. 11.
  12. 12.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mobile Netw. Appl. 19(2), 171–209 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity (2011)Google Scholar
  14. 14.
    Gantz, J., Reinsel, D.: Extracting value from Chaos State of the Universe. IDC (International Data Corporation) June (2011)Google Scholar
  15. 15.
    Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)CrossRefGoogle Scholar
  16. 16.
    Che, D., Safran, M., Peng, Z.: From big data to big data mining: challenges, issues, and opportunities. In: Database Systems for Advanced Applications, pp. 1–15. Springer, Berlin (2013)Google Scholar
  17. 17.
    Zikopoulos, P., deRoos, D., Bienko, C., Buglio, R., Andrews, M.: Big Data Beyond the Hype: A Guide to Conversations for Today’s Data Center (2015)Google Scholar
  18. 18.
    Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2(2), 59–64 (2015)CrossRefGoogle Scholar
  19. 19.
    Zarate Santovena, A.: Big data: evolution, components, challenges and opportunities. Doctoral dissertation, Massachusetts Institute of Technology (2013)Google Scholar
  20. 20.
    Bernard, M.: How big data is changing healthcare. http://www.forbes.com/sites/bernardmarr/2015/04/21/how-big-data-is-changing-healthcare. Accessed: 20 April 2016
  21. 21.
    Yu, E.: IoT to generate massive data, help grow biz revenue. http://www.zdnet.com/article/iot-to-generate-massive-data-help-grow-biz-revenue/. Accessed 20 April 2016
  22. 22.
    Pantelaki, K., Panagiotakis, S., Vlissidis, A.: Survey of the IEEE 802.15.4 Standard’s developments for wireless sensor networking. Am. J. Mobile Syst. Appl. Serv. 2(1), 13–31 (2016)Google Scholar
  23. 23.
    Aggarwal, C.C., Ashish, N., Sheth, A.P.: The internet of things: a survey from the data-centric perspective (2013)Google Scholar
  24. 24.
    Vakintis, I., Panagiotakis, S.: Middleware Platform for Mobile Crowd-Sensing Applications using HTML5 APIs and Web Technologies, chapter contribution in the HandBook “Internet of Things (IoT) in 5G Mobile Technologies. Springer (2016)Google Scholar
  25. 25.
    Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of things. In: From Active Data Management to Event-Based Systems and More, pp. 242–259. Springer, Berlin (2010)Google Scholar
  26. 26.
    Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  27. 27.
    Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat, S., Gubarev, A., Gubarev, Heiser, C., Hochschild, P., Hsieh, W.: Spanner: Google’s globally distributed database. ACM Trans. Comput. Syst. (TOCS) 31(3), 8 (2013)Google Scholar
  28. 28.
    Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43. ACM (2003)Google Scholar
  29. 29.
    Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.: Data management in cloud environments: NoSQL and NewSQL data stores. J. Cloud Comput.: Adv Syst. Appl. 2(1), 22 (2013)CrossRefGoogle Scholar
  30. 30.
    Tauro, C.J., Aravindh, S., Shreeharsha, A.B.: Comparative study of the new generation, agile, scalable, high performance NOSQL databases. Int. J. Comput. Appl. 48(20), 1–4 (2012)Google Scholar
  31. 31.
    Sun, Y., Yan, H., Zhang, J., Xia, Y., Wang, S., Bie, R., Tian, Y.: Organizing and querying the big sensing data with event-linked network in the internet of things. Int. J. Distrib. Sensor Netw. (2014)Google Scholar
  32. 32.
    Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5(3), 299–314 (1996)Google Scholar
  33. 33.
    Graczyk, M., Lasota, T., Trawiński, B.: Comparative analysis of premises valuation models using KEEL, RapidMiner, and WEKA. In: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, pp. 800–812. Springer, Berlin (2009)Google Scholar
  34. 34.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  35. 35.
    Havre, S., Hetzler, B., Nowell, L.: ThemeRiver: visualizing theme changes over time. In: IEEE Symposium on Information Visualization, 2000. InfoVis 2000, pp. 115–123. IEEE (2000)Google Scholar
  36. 36.
    Schonlau, M.: The clustergram: a graph for visualizing hierarchical and non-hierarchical cluster analyses. The Stata J. 3, 316–327 (2002)Google Scholar
  37. 37.
    Shvachko, K.V.: Apache hadoop: the scalability update. Login: The Magazine of USENIX 36, 7–13 (2011)Google Scholar
  38. 38.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Powered by Apache Hadoop. Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)Google Scholar
  39. 39.
    Aly, H., Elmogy, M., Barakat, S.: Big data on internet of things: applications, architecture, technologies, techniques, and future directionsGoogle Scholar
  40. 40.
    “hadoop.apache.org.” www.hadoop.apache.org. Accessed 20 April 2016Google Scholar
  41. 41.
  42. 42.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: A survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Cavanillas, J.M., Curry, E., Wahlster, W.: New Horizons for a Data-Driven Economy, pp. 63–86Google Scholar
  45. 45.
  46. 46.
    Mastorakis, G. (ed.): Resource Management of Mobile Cloud Computing Networks and Environments. IGI Global (2015)Google Scholar
  47. 47.
    Batalla, J.M., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electr. Eng. (2016)Google Scholar
  48. 48.
    Mavromoustakis, C.X., Kormentzas, G., Mastorakis, G., Bourdena, A., Pallis, E., Rodrigues, J.: Context-oriented opportunistic cloud offload processing for energy conservation in wireless devices. In: Globecom Workshops (GC Wkshps), 2014, pp. 24–30. IEEE (2014)Google Scholar
  49. 49.
    Ramgovind, S., Eloff, M.M., Smith, E.: The management of security in cloud computing. In Information Security for South Africa (ISSA), 2010, pp. 1–7. IEEE (2010)Google Scholar
  50. 50.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)CrossRefGoogle Scholar
  51. 51.
    Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Futur. Gener. Comput. Syst. 29(1), 84–106 (2013)CrossRefGoogle Scholar
  52. 52.
    Bourdena, A., Mavromoustakis, C., Mastorakis, G., Rodrigues, J., Dobre, C.: Using socio-spatial context in mobile cloud offload process for energy conservation in wireless devices. IEEE Trans. Cloud Comput. (2015)Google Scholar
  53. 53.
    Mousicou, P., Mavromoustakis, C.X., Bourdena, A., Mastorakis, G., Pallis, E.: Performance evaluation of dynamic cloud resource migration based on temporal and capacity-aware policy for efficient resource sharing. In: Proceedings of the 2nd ACM Workshop on High Performance Mobile Opportunistic Systems, pp. 59–66. ACM (2013)Google Scholar
  54. 54.
    Skourletopoulos, G., Bahsoon, R., Mavromoustakis, C.X., Mastorakis, G., Pallis, E.: Predicting and quantifying the technical debt in cloud software engineering. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 36–40. IEEE (2014)Google Scholar
  55. 55.
    Mavromoustakis, C.X., Mousicou, P., Papanikolaou, K., Mastorakis, G., Bourdena, A., Pallis, E.: Dynamic cloud resource migration for efficient 3D video processing in mobile computing environments. In: Novel 3D Media Technologies, pp. 119–134. Springer New York (2015)Google Scholar
  56. 56.
    Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E., Stratakis, D., Perakakis, E., Kopanakis, I., Papadakis, S., Zaharis, Z.D., Skeberis, C., Xenos, T.D.: A social-oriented mobile cloud scheme for optimal energy conservation. In: Resource Management of Mobile Cloud Computing Networks and Environments, pp. 97–121 (2015)Google Scholar
  57. 57.
    Jing, Q., Vasilakos, A.V., Wan, J., Lu, J., Qiu, D.: Security of the internet of things: perspectives and challenges. Wirel. Netw. 20(8), 2481–2501 (2014)CrossRefGoogle Scholar
  58. 58.
    Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)CrossRefGoogle Scholar
  59. 59.
  60. 60.
    Kryftis, Y., Mastorakis, G., Mavromoustakis, C.X., Batalla, J.M., Rodrigues, J., Drobre, C.: Resource usage prediction models for optimal multimedia content provision. IEEE Syst. J. (2016)Google Scholar
  61. 61.
    Markakis, E., Mastorakis, G., Negru, D., Pallis, E., Mavromoustakis, C.X., Bourdena, A.: A context-aware system for efficient peer-to-peer content provision. In: Dobre, C., Xhafa, F. (eds.) Elsevier Book on Pervasive Computing: Next Generation Platforms for Intelligent Data Collection (2016)Google Scholar
  62. 62.
    Batalla, J.M., Mastorakis, G., Mavromoustakis, C.X., Zurek, J.: On cohabitating networking technologies with common wireless access for home automation systems purposes. In: The Special Issue on “Enabling Wireless Communication and Networking Technologies for the Internet of Things”. IEEE Wirel. Commun. Mag. (2016)Google Scholar
  63. 63.
    Vakintis, I., Panagiotakis, S., Mastorakis, G., Mavromoustakis, C.X.: Evaluation of a Web Crowd-Sensing IoT Ecosystem providing Big Data Analysis. In: Pop, F., Kołodziej, J., di Martino, B. (eds.) Resource Management for Big Data Platforms and Applications. Studies in Big Data Springer series. Springer International Publishing (2017)Google Scholar
  64. 64.
    Batalla, J.M., Mavromoustakis, C.X., Mastorakis, G., Sienkiewicz, K.: On the track of 5G radio access network for IoT wireless spectrum sharing in device positioning applications. In: Internet of Things (IoT) in 5G Mobile Technologies, pp. 25–35. Springer International Publishing (2016)Google Scholar
  65. 65.
    Hadjioannou, V., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Kopanakis, I., Perakakis, E., Panagiotakis, S.: Security in smart grids and smart spaces for smooth IoT deployment in 5G. In: Internet of Things (IoT) in 5G Mobile Technologies, pp. 371–397. Springer International Publishing (2016)Google Scholar
  66. 66.
    Goleva, R., Stainov, R., Wagenknecht-Dimitrova, D., Mirtchev, S., Atamian, D., Mavromoustakis, C.X., Mastorakis, G., Dobre, C., Savov, A., Draganov, P.: Data and traffic models in 5G network. In: Internet of Things (IoT) in 5G Mobile Technologies, pp. 485–499. Springer International Publishing (2016)Google Scholar
  67. 67.
    Mavromoustakis, C.X., Dimitriou, C., Mastorakis, G., Pallis, E.: Real-Time Performance evaluation of F-BTD scheme for optimized QoS energy conservation in wireless devices. In: Proceedings of the IEEE Globecom 2013, 2nd IEEE Workshop on Quality of Experience for Multimedia Communications (QoEMC2013), Atlanta, GA, USA, 09–13 Dec 2013 (grant received by COST ESR)Google Scholar
  68. 68.
    Stratakis, D., Miaoudakis, A., Mastorakis, G., Pallis, E., Xenos, T., Yioultsis, T., Mavromoustakis, C.X.: Noise reduction for accurate power measurements of low level signals. In: International Conference on Telecommunications and Multimedia TEMU 2014. IEEE Communications Society Proceedings, 28–30 July 2014, Crete, Greece, pp. 162–166 (2014)Google Scholar
  69. 69.
    Papadakis, S., Stykas, E., Mastorakis, G., Mavromoustakis, C.X.: A hyper-box approach using relational databases for large scale machine learning. In: International Conference on Telecommunications and Multimedia TEMU 2014, IEEE Communications Society Proceedings, 28–30 July, Crete, Greece, pp. 69–73Google Scholar
  70. 70.
    Mastorakis, G., E.K. Markakis, Evangelos, P., Mavromoustakis, C.X., Skourletopoulos, G.: Virtual network functions exploitation through a prototype resource management framework. In: International Conference on Telecommunications and Multimedia TEMU 2014, IEEE Communications Society proceedings, 28–30 July, Crete, Greece, pp. 24–28Google Scholar
  71. 71.
    Papadopoulos, M., Mavromoustakis, C.X., Skourletopoulos, G., Mastorakis, G., Pallis, E.: Performance analysis of reactive routing protocols in mobile Ad hoc networks. In: International Conference on Telecommunications and Multimedia TEMU 2014, IEEE Communications Society Proceedings, 28–30 July, Crete, Greece, pp. 104–110Google Scholar
  72. 72.
    Mavromoustakis, C.X., Mastorakis, G., Papadakis, S., Andreou, A., Bourdena, A., Stratakis, D.: Energy consumption optimization through pre-scheduled opportunistic offloading in wireless devices. In: The Sixth International Conference on Emerging Network Intelligence, EMERGING 2014, 24–28 Aug 2014, Rome, Italy, pp. 22–28 (best paper invited for journal publication)Google Scholar
  73. 73.
    Mavromoustakis, C.X., Andreou, A., Mastorakis, G., Bourdena, A., Batalla, J.M., Dobre, C.: On the performance evaluation of a novel offloading-based energy conservation mechanism for wireless devices. In: Proceedings of the 6th International Conference on Mobile Networks and Management (MONAMI 2014), 22–24 Sept 2014 Wuerzburg, GermanyGoogle Scholar
  74. 74.
    Ciobanu, N.-V., Comaneci, D.-G., Dobre, C., Mavromoustakis, C.X., Mastorakis, G.: OpenMobs: Mobile broadband internet connection sharing. In: Proceedings of the 6th International Conference on Mobile Networks and Management (MONAMI 2014), 22–24 Sept 2014 Wuerzburg, GermanyGoogle Scholar
  75. 75.
    Ciocan, M., Dobre, C., Mavromoustakis, C.X., Mastorakis, G.: Analysis of vehicular storage and dissemination services based on floating content. In: Proceedings of International Workshop on Enhanced Living EnvironMENTs (ELEMENT 2014), 6th International Conference on Mobile Networks and Management (MONAMI 2014), Wuerzburg, Germany, September 2014Google Scholar
  76. 76.
    Papanikolaou, K., Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Dobre, C.: Energy consumption optimization using social interaction in the mobile cloud. In: Proceedings of International Workshop on Enhanced Living EnvironMENTs (ELEMENT 2014), 6th International Conference on Mobile Networks and Management (MONAMI 2014), Wuerzburg, Germany, September 2014Google Scholar
  77. 77.
    Kryftis, Y., Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Pallis, E., Skourletopoulos, G.: Resource usage prediction for optimal and balanced provision of multimedia services. In: Proceedings of the 19th IEEE International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and Networks (IEEE CAMAD 2014), Athens, Greece, 1–3 Dec 2014Google Scholar
  78. 78.
    Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E., Kormentzas, G., Dimitriou, C.: Joint energy and delay-aware scheme for 5G mobile cognitive radio networks. In: Proceedings of IEEE GlobeCom 2014, track Globecom 2014—Symposium on Selected Areas in Communications: GC14 SAC Green Communication Systems and Networks—GC14 SAC Green Communication Systems and Networks, Austin, TX, USAGoogle Scholar
  79. 79.
    Batalla, J.M., Kantor, M., Mavromoustakis, C.X., Skourletopoulos, G., Mastorakis, G.: A novel methodology for efficient throughput evaluation in virtualized routers. In: Proceedings of IEEE International Conference on Communications 2015 (IEEE ICC 2015), London, UK, 08–12 June 2015Google Scholar
  80. 80.
    Kryftis, Y., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Batalla, J.M., Rodrigues, J., Dobre, C., Kormentzas, G.: Resource usage prediction algorithms for optimal selection of multimedia content delivery methods. In: Proceedings of IEEE International Conference on Communications 2015 (IEEE ICC 2015), London, UK, 08–12 June 2015Google Scholar
  81. 81.
    Ciobanu, R.-I., Marin, R.-C., Dobre, C., Cristea, V., Mavromoustakis, C.X., Mastorakis, G.: Opportunistic dissemination using context-based data aggregation over interest spaces. In: Proceedings of IEEE International Conference on Communications 2015 (IEEE ICC 2015), London, UK, 08–12 June 2015Google Scholar
  82. 82.
    Posnakides, D., Mavromoustakis, C.X., Skourletopoulos, G., Mastorakis, G., Pallis, E., Batalla, J.M.: Performance analysis of a rate-adaptive bandwidth allocation scheme in 5G mobile networks. In: Proceedings of the 2nd IEEE International Workshop on a 5G Wireless Odyssey: 2020 in Conjunction with the ISCC 2015- The Twentieth IEEE Symposium on Computers and Communications (ISCC 2015), 6–9 July 2015Google Scholar
  83. 83.
    Mavromoustakis, C.X., Mastorakis, G., Mysirlidis, C., Dagiuklas, T., Politis, I., Dobre, C., Papanikolaou, K., Pallis, E.: On the perceived quality evaluation of opportunistic mobile P2P scalable video streaming. In: Proceedings of the IEEE IWCMC 2015 Conference, Dubrovnik, Croatia, 24–27 Aug 2015, pp. 1515–1519Google Scholar
  84. 84.
    Kryftis, Y., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Chatzimisios, P.: Epidemic models using resource prediction mechanism for optimal provision of multimedia services. In: 2015 IEEE 20th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) - IEEE CAMAD 2015, University of Surrey, Guildford, UK/General Track, 07–09 Sept 2015, pp. 91–96Google Scholar
  85. 85.
    Pop, C., Ciobanu, R., Marin, R.C., Dobre, C., Mavromoustakis, C.X., Mastorakis, G., Rodrigues, J.J.P.C.: Data dissemination in vehicular networks using context spaces. In: IEEE GLOBECOM 2015, Fourth International Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA), 6–10 Dec 2015Google Scholar
  86. 86.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Rodrigues, J.J.P.C. Chatzimisios, P., Batalla, J.M.: A fluctuation-based modelling approach to quantification of the technical debt on mobile cloud-based service level. In: IEEE GLOBECOM 2015, Fourth International Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA), 6–10 Dec 2015Google Scholar
  87. 87.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Chatzimisios, P., Batalla, J.M.: Towards the evaluation of a big data-as-a-service model: a decision theoretic approach. In: IEEE INFOCOM session on Big Data Sciences, Technologies and Applications (BDSTA 2016)-2016 IEEE Infocom BDSTA Workshop, IEEE International Conference on Computer Communications, 10–15 April 2016, San Francisco, CA, USAGoogle Scholar
  88. 88.
    Gosman, C., Cornea, T., Dobre, C., Mavromoustakis, C.X., Mastorakis, G.: Secure model to share data in intelligent transportation systems. In: 18th Mediterranean Electrotechnical conference—MELECON 2016, session: Internet of Things, Cloud-Based Systems and Big Data Analytics, Limassol, Cyprus, 18–20 April 2016Google Scholar
  89. 89.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Batalla, J.M., Kormentzas, G.: Quantifying and evaluating the technical debt on mobile cloud-based service level. In: IEEE International Conference on Communications (IEEE ICC 2016–Communication QoS, Reliability and Modeling Symposium/Main Track). IEEE ICC 2016—Communication QoS, Reliability and Modeling Symposium, main track, Kuala Lumpur, Malaysia, 23–27 May 2016Google Scholar
  90. 90.
    Hadjioannou, V., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Stratakis, D., Valavani, D.: On the performance comparison of the agent-based rate adaptivity scheme for IEEE 802.11n and ZigBee. In: International Conference on Telecommunications and Multimedia TEMU 2016, IEEE Communications Society proceedings, Heraklion, Greece, 25–27 July 2016Google Scholar
  91. 91.
    Markakis, E., Sideris, A., Alexiou, G., Bourdena, A., Pallis, E., Mastorakis, G., Mavromoustakis, C.X.: A virtual network functions brokering mechanism. In: International Conference on Telecommunications and Multimedia TEMU 2016, IEEE Communications Society Proceedings, Heraklion, Greece, 25–27 July 2016Google Scholar
  92. 92.
    Zaharis, Z.D., Yioultsis, T., Skeberis, C., Xenos, T., Lazaridis, P., Mastorakis, G., Mavromoustakis, C.X.: Implementation of antenna array beamforming by using a novel neural network structure. In: International Conference on Telecommunications and Multimedia TEMU 2016, IEEE Communications Society proceedings, Heraklion, Greece, 25–27 July 2016Google Scholar
  93. 93.
    Bormpantonakis, P., Stratakis, D., Mastorakis, G., Mavromoustakis, C.X., Skeberis, C., Bechet, P.: Exposure EMF measurements with spectrum analyzers using free and open source software. In: International Conference on Telecommunications and Multimedia TEMU 2016, IEEE Communications Society Proceedings, Heraklion, Greece, 25–27 July 2016Google Scholar
  94. 94.
    Hadjioannou, V., Mavromoustakis, C.X., Mastorakis, G., Markakis, E., Pallis, E.: Context awareness location-based android application for tracking purposes in assisted living. In: International Conference on Telecommunications and Multimedia TEMU 2016, IEEE Communications Society Proceedings, Heraklion, Greece, 25–27 July 2016Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Koralia Papadokostaki
    • 1
  • George Mastorakis
    • 1
  • Spyros Panagiotakis
    • 1
  • Constandinos X. Mavromoustakis
    • 2
  • Ciprian Dobre
    • 3
  • Jordi Mongay Batalla
    • 4
  1. 1.Department of Informatics EngineeringTechnological Educational Institute of CreteHeraklionGreece
  2. 2.Department of Computer ScienceUniversity of NicosiaNicosiaCyprus
  3. 3.Faculty of Automatic Control and Computers, Department of Computer ScienceUniversity Politehnica of BucharestBucharestRomania
  4. 4.Warsaw University of TechnologyWarsawPoland

Personalised recommendations