Skip to main content

Applicability of Support Vector Machines in Landslide Susceptibility Mapping

  • Conference paper
  • First Online:
Book cover The Rise of Big Spatial Data

Abstract

Landslides in Slovakia are followed by great economic loss and threat to human life. Therefore, implementation of landslides susceptibility models is essential in urban planning. The main purpose of this study is to investigate the possible applicability of Support Vector Machines (SVMs) in landslides susceptibility prediction. We have built a classification problem with two classes, landslides and stable areas, and applied SVMs algorithms in the districts Bytča, Kysucké Nové Mesto and Žilina. A spatial database of landslides areas and geologically stable areas from the State Geological Institute of Dionýz Štúr were used to fit SVMs models. Four environmental input parameters, land use, lithology, aspect and slope were used to train support vector machines models. During the training phase, the primal objective was to find optimal sets of kernel parameters by grid search. The linear, polynomial and radial basis function kernels were computed. Together 534 models were trained and tested with LIBLINEAR and LIBSVM libraries. Models were evaluated by Accuracy parameter. Then the Receiver Operating Characteristic (ROC) and landslides susceptibility maps were produced for the best model for every kernel. The best predictive performance was gained by radial basis function kernel. This kernel has also the best generalization ability. The results showed that SVMs employed in the presented study gave promising results with more than 0.90 (the area under the ROC curve (AUC) prediction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S (2010) Support vector machines for pattern classification, 2nd edn. Springer, Kobe University, Kobe

    Google Scholar 

  • Baliak F, Stríček I (2012) 50 rokov od katastrofálneho zosuvu v Handlovej/50 years since the catastrophic landslide in Handlova (in Slovak only) Mineralia Slovaca, 44:119–130

    Google Scholar 

  • Bednarik M (2011) Štatistické metódy pri hodnotení zosuvného hazardu a rizika. Habilitation Thesis. Bratislava: Comenius University, Faculty of Natural Sciences

    Google Scholar 

  • Bednarik M, Pauditš P, Ondrášik R (2014) Rôzne spôsoby hodnotenia úspešnosti máp zosuvného hazardu: bivariačný verzus multivariačný štatistický model/Various techniques for evaluating landslide hazard maps reliability: Bivariate vs. multivariate statistical model (in Slovak only) Acta Geologica Slovaca 6(1):71–84

    Google Scholar 

  • Cambell C, Ying Y (2011) Learning with Support Vector Machines. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–427

    Article  Google Scholar 

  • Carrara A, Cardinalli M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1990) Geographical information systems and multivariate models in landslide hazard evaluation. In: Cancell A (ed) ALPS 90 (Alpine Landslide Practical Seminar) Proceedings of the 6th international conference and field workshop on landslide. Universita degli Studi di Milano, Milano, pp 17–28

    Google Scholar 

  • Chang C, Lin C (2011) A library for support vector machines. ACM Trans Intell Syst Technol. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  • Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) A library for large linear classification. J Mach Learn Res 9:1871–1874. http://www.csie.ntu.edu.tw/~cjlin/liblinear

  • Hamel L (2009) Knowledge discovery with Support Vector Machines. Wiley, London

    Book  Google Scholar 

  • Hyun-Joo O, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37:1264–1276

    Article  Google Scholar 

  • Káčer Š, Antalík M, Lexa J, Zvara I, Fritzman R, Vlachovič J, Bystrická G, Brodianska M, Potfaj M, Madarás J, Nagy A, Maglay J, Ivanička J, Gross P, Rakús M, Vozárová A, Buček S, Boorová D, Šimon L, Mello J, Polák M, Bezák V, Hók J, Teťák F, Konečný V, Kučera M, Žec B, Elečko M, Hraško Ľ, Kováčik M, Pristaš J (2005) Digitálna geologická mapa Slovenskej republiky v M 1:50,000 a 1:500,000/Digital geological map of the Slovak Republic at 1:50,000 and 1: 500,000. (in Slovak only) MŽP SR, ŠGÚDŠ, Bratislava

    Google Scholar 

  • Lee S, Ryu J, Won J, Park H (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298

    Article  Google Scholar 

  • Mitchell T (1997) Machine learning. McGraw-Hill Science, New York

    Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Problems Eng. doi:10.1155/2010/901095

  • Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison-Wesley/Pearson Education, Harlow

    Google Scholar 

  • Pauditš P (2005) Landslide susceptibility assessment using statistical methods within GIS environment. PhD Thesis. Comenius University, Faculty of Natural Sciences 2005, Bratislava

    Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner M (2010) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban Syst 34:216–235

    Article  Google Scholar 

  • Šimeková J, Martinčeková T (eds) Baliak PAF, Caudt L, Gejdoš T, Grencíková A, Grman MD, Jadron DH, Kopecký M, Kotrcová E, Lišcák P, Malgot J, Masný M, Mokrá M, Petro L, Polašcinová E, Rusnák M, Sluka V, Solciansky R, Wanieková D, Záthurecký A, Žabková E (2006) Atlas máp stability svahov Slovenskej republiky 1:50,000/Atlas of Slope Stability Maps of the Slovak Republic at scale 1:50,000). Technical report, Vyd. MŽP SR Bratislava/Ingeo-IGHP s.r.o., (in Slovak only), Žilina

    Google Scholar 

  • Šimeková J, Liščák P, Jánová V, Martinčeková T (2014) Atlas of slope stability maps of the Slovak Republic at Scale 1:50,000—its results and use in practice. Slovak Geological Magazine, vol 14, SGÚDŠ, Bratislava, pp 19–31

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Vahidnia MH, Alesheikh A, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36:1101–1114

    Article  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • You X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101:572–582

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants Nos. 1/0954/15 and 1/0682/16 of the Grant Agency of Slovak Republic VEGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Karell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karell, L., Muňko, M., Ďuračiová, R. (2017). Applicability of Support Vector Machines in Landslide Susceptibility Mapping. In: Ivan, I., Singleton, A., Horák, J., Inspektor, T. (eds) The Rise of Big Spatial Data. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-45123-7_27

Download citation

Publish with us

Policies and ethics