Skip to main content

MapReduce Based Scalable Range Query Architecture for Big Spatial Data

  • Conference paper
  • First Online:
The Rise of Big Spatial Data

Abstract

Finding all objects that overlap a given range query is very important in terms of extraction useful information from big spatial data. In this study, in order to be able to realize range query on large amounts of spatial data, three datasets are created with different size and a MapReduce computation model is set up to test scalability of range queries. Experimental results show that process times for range query reduce with increase of conventional machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akdogan A, Demiryurek U, Banaei-Kashani F, Shahabi C (2010) Voronoi-based geospatial query processing with MapReduce. In: IEEE second international conference on cloud computing technology and science, pp. 9–16

    Google Scholar 

  • Andreica MI, Tapus N (2010) Sequential and MapReduce-based algorithms for constructing an in-place multidimensional quad-tree index for answering fixed-radius nearest neighbor queries. Acta Univ Apulensis-Mathematics-Informatics (ISSN: 1582–5329), 131–151

    Google Scholar 

  • Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113

    Article  Google Scholar 

  • Demir İ, Sayar A (2012) Hadoop plugin for distributed and parallel image processing. In: 20th signal processing and communications applications conference, Mugla, Turkey, pp. 1–4

    Google Scholar 

  • Demir İ, Sayar A (2014) Hadoop optimization for massive image processing: case study face detection. Int J Comput Commun Control 9(6):664–671

    Article  Google Scholar 

  • Eken S, Sayar A (2015a) An automated technique to determine spatio-temporal changes in satellite island images with vectorization and spatial queries. Sadhana 40(1):121–137

    Article  Google Scholar 

  • Eken S, Sayar A (2015b) Big data frameworks for efficient range queries to extract interested rectangular sub regions. Int J Comput Appl 119(22):36–39

    Google Scholar 

  • Eldawy A, Mokbel MF (2013) A demonstration of spatialhadoop: an efficient MapReduce framework for spatial data. Proc VLDB Endow 6(12):1230–1233

    Article  Google Scholar 

  • Ergün U, Eken S, Sayar A (2013) Güncel Dağıtık Dosya Sistemlerinin Karşılaştırmalı Analizi. 6. Mühendislik ve Teknoloji Sempozyumu, Ankara, Turkey, pp. 213–218. (in Turkish)

    Google Scholar 

  • Fox GC, Aktas MS, Aydin G, Gadgil H, Pallickara S, Pierce ME, Sayar A (2009) Algorithms and the Grid. Comput Vis Sci 12(3):115–124

    Article  Google Scholar 

  • Khlopotine AB, Jandhyala V, Kirkpatrick D (2013) A variant of parallel plane sweep algorithm for multi-core systems. IEEE Trans Comput Aided Des Integr Circuits Syst 32(6):966–970

    Article  Google Scholar 

  • Liao H, Han J, Fang J (2010) Multi-dimensional index on Hadoop distributed file system. In: IEEE Fifth international conference on networking, architecture and storage, pp. 240–249

    Google Scholar 

  • Liu X, Han J, Zhong Y, Han C, He X (2009) Implementing WebGIS on Hadoop: a case study of improving small file I/O performance on HDFS. In: IEEE international conference on cluster computing and work-shops, p. 1–8

    Google Scholar 

  • Lu W, Shen Y, Chen S, Ooi BC (2012) Efficient processing of K nearest neighbor joins using MapReduce. Proc VLDB Endow 5(10):1016–1027

    Article  Google Scholar 

  • Lu P, Chen G, Oo BC, Vo HT, Wu S (2014) ScalaGiST: scalable generalized search trees for MapReduce systems. Proc VLDB Endow 7(14):1797–1808

    Article  Google Scholar 

  • Martınez F, Rueda AJ, Feito FR (2009) A new algorithm for computing Boolean operations on polygons. Comput Geosci 35:1177–1185

    Article  Google Scholar 

  • McKenney M, McGuire T (2009) A parallel plane sweep algorithm for multi-core systems. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp. 392–395

    Google Scholar 

  • Mohammed Al-Naami K, Seker S, Khan L (2014) GISQF: an efficient spatial query processing system. In: 2014 IEEE 7th international conference on cloud computing, pp. 681–688

    Google Scholar 

  • Mount DM (2004) Geometric intersection. In: Goodman JE, O’Rourke J (eds) The handbook of discrete and computational geometry, 2nd edn. Chapman & Hall/CRC, Boca Raton, pp 857–876

    Google Scholar 

  • Official Hadoop Web Site, http://hadoop.apache.org/. Accessed 10 Nov 2015

  • Puri S, Prasad SK (2014) Output-sensitive parallel algorithm for polygon clipping. In: 43rd international conference on parallel processing, pp. 241–250

    Google Scholar 

  • Rajaraman A, Ullman JD (2012) Mining of massive datasets. Cambridge University Press, Cambridge

    Google Scholar 

  • Sayar A, Eken S, Mert U (2013) Registering LandSat-8 mosaic images: a case study on the Marmara Sea. In: IEEE 10th international conference on electronics computer and computation, pp. 375–377

    Google Scholar 

  • Sayar A, Eken S, Mert U (2014) Tiling of satellite images to capture an island object. Commun Comput Inf Sci 459:195–204

    Article  Google Scholar 

  • Sayar A, Eken S, Öztürk O (2015) Kd-tree and quad-tree decompositions for declustering of 2-D range queries over uncertain space. Front Inf Technol Electron Eng 16(2):98–108

    Article  Google Scholar 

  • Schneider BO, van Welzen J (1998) Efficient polygon clipping for an SIMD graphics pipeline. IEEE Trans Vis Comput Graph 4(3):272–285

    Article  Google Scholar 

  • Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop distributed file system. In: IEEE/NASA goddard conference on mass storage systems and technologies, pp. 1–10

    Google Scholar 

  • Theoharis T, Page I (1989) Two parallel methods for polygon clipping. In: Computer Graphics Forum, vol 8, no 2. Wiley Online Library, pp. 107–114

    Google Scholar 

  • Wessler M (2013) Big data analytics for dummies. Wiley, Hoboken

    Google Scholar 

  • Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working set. In: Proceedings of the 2nd USENIX conference on hot topics in cloud computing, pp. 1–7

    Google Scholar 

  • Zhang C, Li F, Jestes J (2012) Efficient parallel kNN joins for large data in MapReduce. In: Proceedings of the 15th international conference on extending database technology, pp. 38–49

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the TUBITAK under Grant 215E189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Eken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Eken, S., Kizgindere, U., Sayar, A. (2017). MapReduce Based Scalable Range Query Architecture for Big Spatial Data. In: Ivan, I., Singleton, A., Horák, J., Inspektor, T. (eds) The Rise of Big Spatial Data. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-45123-7_19

Download citation

Publish with us

Policies and ethics