Outlook for the Single-Tree-Level Forest Inventory in Nordic Countries

  • Ville Kankare
  • Markus Holopainen
  • Mikko Vastaranta
  • Xinlian Liang
  • Xiaowei Yu
  • Harri Kaartinen
  • Antero Kukko
  • Juha Hyyppä
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In Nordic countries, the forest resource information systems have advanced to a state where substand-level information can be utilized. The demand of high detail up-to-date forest resource information has become a prerequisite for many of the operators working with the data, but the information on the forest attributes such as species-specific timber assortments and tree quality cannot be obtained accurately enough from the current inventory systems. Therefore, the forest organizations are actively looking forward and started the development of the next generation forest inventory platforms. The vision is, a radical leap in the cost effectiveness of forestry and wood supply will be gained through new digital services and Big Data applications. The most prominent solution for the increased demand on the information detail is single-tree-level forest inventory through various laser scanning technologies (airborne-, terrestrial- and mobile laser scanning, (ALS, TLS and MLS, respectively)) but it has not yet been adapted into operational forestry mainly due to the higher costs and challenges in data processing. Many studies have already concluded that single-tree-level information will play an important role in the next generation’s forest mapping systems that will be based on multisource approach. The challenges in multisource approach have been the data acquisition, automatic tree attribute measurements and the optimal data combinations. MLS and harvester data are of high interest technologies in the reference data acquisition but have not yet been implemented into practical applications. The goal of the present outlook was to evaluate and discuss the potential and challenges of the laser scanning technologies (especially ALS and TLS) in single-tree-level forest inventory as a part of multisource approach which, when implemented, will create a scenario for vast forest big data.

Keywords

Remote sensing Laser scanning Single-tree-level Forest inventory GIS Ostrava 2016 

Notes

Acknowledgments

Our study was made possible by financial aid from the Finnish Academy project Centre of Excellence in Laser Scanning Research (CoE-LaSR, decision number 272195). We would like to acknowledge the partners in Forest Big Data (FBD)/Data to Intelligence (D2I) Digile/Tekes Program.

References

  1. Eysn L et al (2015) A benchmark of lidar-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 6:1721–1747CrossRefGoogle Scholar
  2. Hauglin M, Astrup R, Gobakken T, Næsset E (2013) Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features. Scand J For Res 28:456–469CrossRefGoogle Scholar
  3. Hauglin M, Gobakken T, Astrup R, Ene L, Næsset E (2014) Estimating single-tree crown biomass of Norway spruce by airborne laser scanning: a comparison of methods with and without the use of terrestrial laser scanning to obtain the ground reference data. Forests 5:384–403CrossRefGoogle Scholar
  4. Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423CrossRefGoogle Scholar
  5. Holmgren J, Persson Å, Söderman U (2008) Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int J Remote Sens 29:1537–1552CrossRefGoogle Scholar
  6. Holopainen M, Mäkinen A, Rasinmäki J, Hyyppä J, Hyyppä H, Kaartinen H, Viitala R, Vastaranta M, Kangas A (2010) Effect of tree level airborne laser scanning accuracy on the timing and expected value of harvest decisions. Eur J For Res 129:899–910CrossRefGoogle Scholar
  7. Holopainen M, Vastaranta M, Rasinmäki J, Kalliovirta J, Mäkinen A, Haapanen R, Melkas T, Yu X, Hyyppä J (2011) Uncertainty in timber assortment estimates predicted from forest inventory data. Eur J For Res 129:1131–1142CrossRefGoogle Scholar
  8. Holopainen M, Vastaranta M, Hyyppä J (2014) Outlook for the next generation’s precision forestry in Finland. Forests 5:1682–1694CrossRefGoogle Scholar
  9. Hovi A, Korhonen L, Vauhkonen J, Korpela I (2016) LiDAR waveform feature for tree species classification and their sensitivity to tree- and acquisition related parameters. Remote Sens. Environ. 173:224–237CrossRefGoogle Scholar
  10. Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finl 16:27–42Google Scholar
  11. Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, Næsset E, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu J-C (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 4:950–974CrossRefGoogle Scholar
  12. Kaartinen H, Hyyppä J, Vastaranta M, Kukko A, Jaakkola A, Yu X, Pyörälä J, Liang X, Liu J, Wang Y, Kaijaluoto R, Melkas T, Holopainen M, Hyyppä H (2015) Accuracy of kinematic positioning using global satellite navigation systems under forest canopies. Forests 6:3218–3236CrossRefGoogle Scholar
  13. Kalliovirta J, Tokola T (2005) Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fenn 39:227–248CrossRefGoogle Scholar
  14. Kankare V, Holopainen M, Vastaranta M, Puttonen E, Yu X, Hyyppä J, Vaaja M, Hyyppä H, Alho P (2013a) Individual tree biomass estimation using terrestrial laser scanning. ISPRS J Photogram Remote Sens 75:64–75CrossRefGoogle Scholar
  15. Kankare V et al (2013b) Single tree biomass modelling using airborne laser scanning. ISPRS J Photogramm Remote Sens 85:66–73CrossRefGoogle Scholar
  16. Kankare V et al (2014a) Estimation of timber quality of Scots pine with terrestrial laser scanning. Forests 5:1879–1895CrossRefGoogle Scholar
  17. Kankare V et al (2014b) Accuracy in estimation of timber assortments and stem distribution—a comparison of airborne and terrestrial laser scanning techniques. ISPRS J Photogramm Remote Sens 97:89–97CrossRefGoogle Scholar
  18. Kankare V, Liang X, Vastaranta M, Yu X, Holopainen M, Hyyppä J (2015) Diameter distribution estimation with laser scanning based multisource single tree inventory. ISPRS J Photogramm Remote Sens 108:161–171CrossRefGoogle Scholar
  19. Korpela I, Ørka HO, Maltamo M, Tokola T (2010) Tree species classification using airborne LiDAR—effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fenn 44:319–339CrossRefGoogle Scholar
  20. Kretschmer U, Kirchner N, Morhart C, Spiecker H (2013) A new approach to assessing tree stem quality characteristics using terrestrial laser scans. Silva Fenn 47:1–14CrossRefGoogle Scholar
  21. Kukko A (2013) Mobile laser scanning—system development, performance and applications, vol 153. Finnish Geodetic Institute, KirkkonummiGoogle Scholar
  22. Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch, vol 108. Communicationes Institute Forestalis FenniaeGoogle Scholar
  23. Liang X, Litkey P, Hyyppä J, Kaartinen H, Kukko A, Holopainen M (2011) Automatic plot-wise tree location mapping using single-scan terrestrial laser scanning. Photogramm J Finl 22:37–48Google Scholar
  24. Liang X, Litkey P, Hyyppa J, Kaartinen H, Vastaranta M, Holopainen M (2012) Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans Geosci Remote Sens 50:661–670CrossRefGoogle Scholar
  25. Liang X, Hyyppä J (2013) Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels. Sensors 13:1614–1634CrossRefGoogle Scholar
  26. Liang X, Kankare V, Yu X, Hyyppä J, Holopainen M (2014) Automated stem curve measurement using terrestrial laser scanning. IEEE Trans Geosci Remote Sens 52:1739–1748CrossRefGoogle Scholar
  27. Lindberg E, Holmgren J, Olofsson K, Olsson H (2012) Estimation of stem attributes using a combination of terrestrial and airborne laser scanning. Eur J For Res 131:1917–1931CrossRefGoogle Scholar
  28. Maas H-G, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29:1579–1593CrossRefGoogle Scholar
  29. Maltamo M, Mustonen K, Hyyppä J, Pitkänen J, Yu X (2004) The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can J For Res 34:1791–1801CrossRefGoogle Scholar
  30. Maltamo M, Peuhkurinen J, Malinen J, Vauhkonen J, Tokola T (2009) Predicting tree attributes and quality characteristics of scots pine using airborne laser scanning data. Silva Fenn 43:507–521CrossRefGoogle Scholar
  31. Othmani A, Lew Yan Voon LFC, Stolz C, Piboule A (2013) Single tree species classification from terrestrial laser scanning data for forest inventory. Pattern Recognit Lett 34(16):2144–2150CrossRefGoogle Scholar
  32. Persson A, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68:925–932Google Scholar
  33. Pfeifer N, Winterhalder D (2004) Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):76–81Google Scholar
  34. Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577CrossRefGoogle Scholar
  35. Popescu SC (2007) Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 31:646–655CrossRefGoogle Scholar
  36. Puttonen E, Suomalainen J, Hakala T, Räikkönen E, Kaartinen H, Kaasalainen S, Litkey P (2010) Tree species classification from fused active hyperspectral reflectance and LiDAR measurements. For Ecol Manag 260:1843–1852CrossRefGoogle Scholar
  37. Rasinmäki J, Melkas T (2005) A method for estimating tree composition and volume using harvester data. Scan J For Res 20:85–95CrossRefGoogle Scholar
  38. Raumonen P, Kaasalainen M, Åkerblom M, Kaasalainen S, Kaartinen H, Vastaranta M, Holopainen M, Disney M, Lewis P (2013) Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens 5:491–520CrossRefGoogle Scholar
  39. Repola J (2008) Biomass equations for birch in Finland. Silva Fenn 42:605–624CrossRefGoogle Scholar
  40. Repola J (2009) Biomass equations for Scots pine and Norway spruce. Silva Fenn 43:625–647CrossRefGoogle Scholar
  41. Rönnholm P, Hyyppä J, Hyyppä H, Haggrén H, Yu X, Kaartinen H (2004) Calibration of laser-derived tree height estimates by means of photogrammetric techniques. Scan J For Res 19:524–528CrossRefGoogle Scholar
  42. Saarinen N, Vastaranta M, Kankare V, Tanhuanpää T, Holopainen M, Hyyppä J, Hyyppä H (2014) Urban-tree-attribute update using multisource single-tree inventory. Forests 5:1032–1052CrossRefGoogle Scholar
  43. Stängle SM, Brüchert F, Kretschmer U, Spiecker H, Sauter UH (2014) Clear wood content in standing trees predicted from branch scar measurements with terrestrial LiDAR and verified with x-ray computed tomography. Can J For Res 44:145–153CrossRefGoogle Scholar
  44. Thies M, Pfeifer N, Winterhalder D, Gorte BGH (2004) Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scand J For Res 19:571–581CrossRefGoogle Scholar
  45. Vastaranta M, Ojansuu R, Holopainen M (2010) Puustotietojen ajantasaistuksen luotettavuus. Metsätieteen aikakauskirja 4:367–381Google Scholar
  46. Vastaranta M, Holopainen M, Yu X, Hyyppä J, Mäkinen A, Rasinmäki J, Melkas T, Kaartinen H, Hyyppä H (2011) Effects of individual tree detection error sources on forest management planning calculations. Remote Sens 3:1614–1626CrossRefGoogle Scholar
  47. Vastaranta M, Saarinen N, Kankare V, Holopainen M, Kaartinen H, Hyyppä J, Hyyppä H (2014) Multisource single-tree inventory in the prediction of tree quality variables and logging recoveries. Remote Sens 6:3475–3491CrossRefGoogle Scholar
  48. Vauhkonen J, Tokola T, Packalén P, Maltamo M (2009) Identification of Scandinavian commercial species of individual trees from airborne laser scanning data using alpha shape metrics. For Sci 55:37–47Google Scholar
  49. Vauhkonen J, Korpela I, Maltamo M, Tokola T (2010) Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sens Environ 114:1263–1276CrossRefGoogle Scholar
  50. Vauhkonen J et al (2012) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85:27–40CrossRefGoogle Scholar
  51. Vauhkonen J, Ørka HO, Holmgren J, Dalponte M, Heinzel J, Koch B (2014) Tree species recognition based on airborne laser scanning and complementary data sources. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry application of airborne laser scanning: concepts and case studies, managing forest ecosystems, vol 27. Springer, Berlin, pp 135–156CrossRefGoogle Scholar
  52. Yao T, Yang X, Zhao F, Wang Z, Zhang Q, Jupp D, Lovell J, Culvenor D, Newnham G, Ni-Meister W, Schaaf C, Woodcock C, Wang J, Li X, Strahler A (2011) Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens Environ 11(15):2965–2974CrossRefGoogle Scholar
  53. Yu X, Hyyppä J, Vastaranta M, Holopainen M, Viitala R (2011) Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS J Photogramm Remote Sens 66:28–37CrossRefGoogle Scholar
  54. Yu X, Liang X, Hyyppä J, Kankare V, Vastaranta M, Holopainen M (2013) Accurate stem biomass estimation based on stem reconstruction from terrestrial laser scanning point clouds. Remote Sens Lett 4(4):344–353CrossRefGoogle Scholar
  55. Yu X et al (2015) Comparison of laser and stereo optical, SAR and inSAR point clouds from air- and space-borne sources in the retrieval of forest inventory attributes. Remote Sens 7:15933–15954CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ville Kankare
    • 1
    • 3
  • Markus Holopainen
    • 1
    • 3
  • Mikko Vastaranta
    • 1
    • 3
  • Xinlian Liang
    • 2
    • 3
  • Xiaowei Yu
    • 2
    • 3
  • Harri Kaartinen
    • 2
    • 3
  • Antero Kukko
    • 2
    • 3
  • Juha Hyyppä
    • 2
    • 3
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.National Land SurveyFinnish Geospatial Research InstituteMasalaFinland
  3. 3.Centre of Excellence in Laser Scanning ResearchFinnish Geospatial Research InstituteMasalaFinland

Personalised recommendations