Advertisement

Disruption of Pollination Services by Invasive Pollinator Species

  • Carolina L. MoralesEmail author
  • Agustín Sáez
  • Lucas A. Garibaldi
  • Marcelo A. Aizen
Part of the Invading Nature - Springer Series in Invasion Ecology book series (INNA, volume 12)

Abstract

Plant–pollinator interactions and associated pollination services are essential for crop production and the integrity of terrestrial ecosystem services. Introduced pollinators, in particular social bees such as honeybees and bumblebees, have become invaders in many regions of the world, strongly affecting the pollination of native, cultivated, and non-native plants. These effects can be direct, when invaders interact with local flowering plants, or indirect, when invaders modify the interaction of native pollinators with flowering plants. Direct effects on pollination depend on whether the plant benefits from the flower visits are greater than their costs, a relationship that can be density dependent. Shifts from mutualism to antagonism occur when invasive pollinators reach extremely high densities, because the interaction costs exceed the benefits. Indirect effects depend on whether pollinator invaders alter the benefit–cost ratio of native pollinator visits, displace them, or trigger reductions in native pollinator diversity. Through a literature review, we found that the impacts of invasive pollinators on pollination were predominantly negative for native plants, mixed for crops, and positive for invasive plants. Furthermore, they can synergistically interact with other stressors on pollination such as climate change and habitat disturbance. Although invasive pollinators can back up pollination of some native plants in highly disturbed habitats, and some crops in intensively modified agro-ecosystems, they cannot replace the role of a diverse pollinator assemblage for wild plant reproduction and crop yield. Hence, managing agro-ecosystems for enhancing wild pollinator diversity, and avoiding further introductions of non-native pollinators, are realistic cost-effective measures for the provision and stability of pollination services.

Keywords

Apis Bombus Climate change Crop Disturbance Indirect effects Introduced pollinators Mutualism 

Notes

Acknowledgments

We thank N. Bartomeus and M. Vilà for helpful comments on a previous draft. We also thank PICT 2012–3015 funding. A.S. holds a doctoral scholarship from CONICET.

References

  1. Aguilar R, Ashworth L, Galetto L et al (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980CrossRefPubMedGoogle Scholar
  2. Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:0396–0403CrossRefGoogle Scholar
  3. Aizen MA, Garibaldi LA, Cunningham SA et al (2009) How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann Bot 103:1579–1588CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aizen MA, Morales CL, Vázquez DP et al (2014) When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytol 204:322–328CrossRefGoogle Scholar
  5. Bartomeus I, Ascher JS, Gibbs J et al (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci U S A 110:4656–4660CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefPubMedGoogle Scholar
  7. Brittain C, Williams N, Kremen C et al (2013) Synergistic effects of non-Apis bees and honeybees for pollination services. Proc Biol Sci 280:2012–2767CrossRefGoogle Scholar
  8. Forrest JRK (2015) Plant–pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13CrossRefGoogle Scholar
  9. Fründ J, Dormann CF, Holzschuh A et al (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054CrossRefPubMedGoogle Scholar
  10. Gagic V, Bartomeus I, Jonsson T et al (2015) Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc R Soc B Biol Sci 282:2014–2620CrossRefGoogle Scholar
  11. Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611CrossRefPubMedGoogle Scholar
  12. Garibaldi LA, Carvalheiro LG, Leonhardt SD et al (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12(8):439–447CrossRefGoogle Scholar
  13. Gibbs J, Sheffield CS (2009) Rapid range expansion of the wool-carder bee, Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae), in North America. J Kansas Entomol Soc 82:21–29CrossRefGoogle Scholar
  14. González-Varo JP, Biesmeijer JC, Bommarco R et al (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530CrossRefPubMedGoogle Scholar
  15. Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26CrossRefGoogle Scholar
  16. Goulson D, Stout JC, Kells AR (2002) Do exotic bumblebees and honeybees compete with native flower-visiting insects in Tasmania? J Insect Conserv 6:179–189CrossRefGoogle Scholar
  17. Kenis M, Auger-Rozenberg M-A, Roques A et al (2008) Ecological effects of invasive alien insects. Biol Invasions 11:21–45CrossRefGoogle Scholar
  18. Klein A-M, Vaissière BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313CrossRefPubMedGoogle Scholar
  19. Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc Biol Sci 269:2395–2399CrossRefPubMedPubMedCentralGoogle Scholar
  20. Montero-Castaño A, Vilà M (2012) Impact of landscape alteration and invasions on pollinators: a meta-analysis. J Ecol 100:884–893CrossRefGoogle Scholar
  21. Morales CL, Arbetman MP, Cameron SA et al (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534CrossRefGoogle Scholar
  22. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326CrossRefGoogle Scholar
  23. Roubik DW (2002) The value of bees to the coffee harvest. Nature (Lond) 417:2002CrossRefGoogle Scholar
  24. Schleuning M, Fründ J, García D (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38:1–13CrossRefGoogle Scholar
  25. Schneider S, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376CrossRefGoogle Scholar
  26. Schweiger O, Biesmeijer JC, Bommarco R et al (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795PubMedGoogle Scholar
  27. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown ? Biol Invasions 1:21–32CrossRefGoogle Scholar
  28. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216CrossRefPubMedGoogle Scholar
  29. Tscharntke T, Klein AM, Kruess A (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Carolina L. Morales
    • 1
    Email author
  • Agustín Sáez
    • 1
  • Lucas A. Garibaldi
    • 2
  • Marcelo A. Aizen
    • 1
  1. 1.Laboratorio EcotonoINIBIOMA (CONICET-Universidad Nacional del Comahue)BarilocheArgentina
  2. 2.Grupo de Investigación en Agroecología (AGRECO)Sede Andina, Universidad Nacional de Río Negro (UNRN) and CONICETBarilocheArgentina

Personalised recommendations