Origin and Domestication of Foxtail Millet

  • Xianmin DiaoEmail author
  • Guanqing Jia
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 19)


Among the more than 100 species in Setaria, S. macrostachya, S. pumila, and foxtail millet (S. italica) cereals were domesticated by human beings. However, only foxtail millet became a worldwide crop, contributing greatly to the development of Chinese civilization and remaining as a staple cereal in arid and semi-arid regions. Green foxtail is the ancestor of cultivated foxtail millet and both can be regarded as the same species. Archeological evidence indicates that the domestication of foxtail millet from green foxtail probably began around 16,000 YBP, was a recognized crop around 9000–10,000 YBP, and became popular in Northern China at about 5000–6000 YBP, then spread to other parts of the world. Although there has been some controversies over whether the domestication of foxtail millet has occurred more than once, recent molecular data and archeological evidence suggest a single domestication event.


Foxtail millet Green foxtail Domestication Setaria 


  1. Austin DF. Fox-tail millets (Setaria: Poaceae)—abandoned food in two hemispheres. Econ Bot. 2006;60(2):143–58.CrossRefGoogle Scholar
  2. Bennetzen JL, Schmutz J, Wang H, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30(6):555–61.PubMedCrossRefGoogle Scholar
  3. Callen EO. The first new world cereal. Am Antiq. 1967;32(4):535–8.CrossRefGoogle Scholar
  4. Crawford G. The transitions to agriculture in Japan. In: Gebauer A, Price TD, editors. Transitions to agriculture in prehistory. Madison: Prehistory Press; 1992. p. 17–132.Google Scholar
  5. Croullebois ML, Barreneche MT, Cherisey H, et al. Intraspecific differentiation of Setaria italica (L.) PB: study of abnormalities (weakness, segregation distortion, and partial sterility) observed in F1 and F2 generations. Genome. 1989;32(2):203–7.CrossRefGoogle Scholar
  6. Daniel Z, Maria H. Domestication of plants in the old world. Oxfordshire: Oxford University Press; 2000.Google Scholar
  7. Darmency H, Zangre GR, Pernes J. The wild-weed-crop complex in Setaria: a hybridization study. Genetica. 1987a;75(2):103–7.CrossRefGoogle Scholar
  8. Darmency H, Ouin C, Pernes J. Breeding foxtail millet (Setaria italica) for quantitative traits after interspecific hybridization and polyploidization. Genome. 1987b;29(3):453–6.CrossRefGoogle Scholar
  9. Datta SC, Banerjee AK. Useful weeds of West Bengal rice fields. Econ Bot. 1978;32(3):297–310.CrossRefGoogle Scholar
  10. Dekker J. The foxtail (Setaria) species-group. Weed Sci. 2003;51(5):641–56.CrossRefGoogle Scholar
  11. d’Ennequin MLT, Panaud O, Toupance B, et al. Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theor Appl Genet. 2000;100(7):1061–6.CrossRefGoogle Scholar
  12. De Wet JMJ. The three phases of cereal domestication. In: Capman GP, editor. Grass evolution and domestication. Cambridge: Cambridge University Press; 1992. p. 176–98.Google Scholar
  13. Felger RS, Moser MB. People of the desert and sea: ethnobotany of the Seri Indians. Tucson: University Arizona Press; 1985.Google Scholar
  14. Fukunaga K, Wang Z, Kato K, et al. Geographical variation of nuclear genome RFLPs and genetic differentiation in foxtail millet, Setaria italica (L.) P. Beauv. Genet Resour Crop Evol. 2002;49(1):95–101.CrossRefGoogle Scholar
  15. Fukunaga K, Ichitani K, Kawase M. Phylogenetic analysis of the rDNA intergenic spacer subrepeats and its implication for the domestication history of foxtail millet, Setaria italica. Theor Appl Genet. 2006;113(2):261–9.PubMedCrossRefGoogle Scholar
  16. Harlan JR. The possible role of weed races in the evolution of cultivated plants. Euphytica. 1965;14(2):173–6.CrossRefGoogle Scholar
  17. Harlan JR. Crops and man. Madison: American Society of Agronomy and Crop Science Society of America; 1975.Google Scholar
  18. Harlan JR, De Wet JMJ, Price EG. Comparative evolution of cereals. Evolution. 1973;27:311–25.CrossRefGoogle Scholar
  19. He H, Hui F. The history of millet cultivation in ancient China. Beijing: China Agricultural Science and Technology Press; 2015.Google Scholar
  20. Hirano R, Naito K, Fukunaga K, et al. Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome. 2011;54(6):498–506.PubMedCrossRefGoogle Scholar
  21. Huang P, Feldman M, Schroder S, et al. Population genetics of Setaria viridis, a new model system. Mol Ecol. 2014;23(20):4912–25.PubMedCrossRefGoogle Scholar
  22. Hubbard FT. A taxonomic study of Setaria italica and its immediate allies. Am J Bot. 1915;2(4):169–98.CrossRefGoogle Scholar
  23. Hunt HV, Vander Linden M, Liu X, et al. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg Hist Archaeobot. 2008;17(1):5–18.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jia G, Huang X, Zhi H, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet. 2013;45(8):957–61.PubMedCrossRefGoogle Scholar
  25. Jones M. Between fertile crescents: minor grain crops and agricultural origins. In: Jones M, editor. Traces of ancestry: studies in honour of Colin Renfrew. Cambridge: McDonald Institute for Archaeological Research; 2004. p. 127–36.Google Scholar
  26. Jusuf M, Pernes J. Genetic variability of foxtail millet (Setaria italica P. Beauv.). Theor Appl Genet. 1985;71(3):385–91.PubMedCrossRefGoogle Scholar
  27. Kawase M, Sakamoto S. Variation, geographical distribution and genetical analysis of esterase isozymes in foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet. 1984;67(6):529–33.PubMedCrossRefGoogle Scholar
  28. Kawase M, Sakamoto S. Geographical distribution of landrace groups classified by hybrid pollen sterility in foxtail millet, Setaria italica (L.) P. Beauv. Jpn J Breed. 1987;37(1):1–9.CrossRefGoogle Scholar
  29. Kellogg EA. Poaceae. In: Kubitzki K, editor. The families and genera of vascular plants. Berlin: Springer; 2015. p. 1–415.Google Scholar
  30. Kellogg EA, Aliscioni SS, Morrone O, et al. A phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and related genera, based on the chloroplast gene ndhF. Int J Plant Sci. 2009;170:117–31.CrossRefGoogle Scholar
  31. Kihara H, Kishimoto E. Bastarde zwischen Setaria italica and S. viridis. Bot Mag. 1942;20:63–7.Google Scholar
  32. Klmata M, Ashok EG, Seetharam A. Domestication, cultivation and utilization of two small millets, Brachiaria ramosa and Setaria glauca (Poaceae), in south India. Econ Bot. 2000;54(2):217–27.CrossRefGoogle Scholar
  33. Lee G-A. The transition from foraging to farming in prehistoric Korea. Curr Anthropol. 2000;52(S4):S307–29.CrossRefGoogle Scholar
  34. Li HW, Meng CJ, Liu TN. Problems in the breeding of millet (Setaria italica (L.) Beuav.). J Am Soc Agron. 1935;27(12):963–70.CrossRefGoogle Scholar
  35. Li CH, Pao WK, Li HW. Interspecific Crosses in Setaria II. Cytological studies of interspecific hybrids involving: 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica × S. viridis and S. faberii. J Hered. 1942;33(10):351–5.Google Scholar
  36. Li HW, Li CH, Pao WK. Cytological and genetical studies of the interspecific cross of the cultivated foxtail millet, Setaria italica (L.) Beauv., and the green foxtail millet, S. viridis L. J Am Soc Agron. 1945;37(1):32–54.CrossRefGoogle Scholar
  37. Li Y, Wu S, Cao Y. Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv.). Euphytica. 1995;83(1):79–85.CrossRefGoogle Scholar
  38. Li Y, Jia J, Wang Y, et al. Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet Resour Crop Evol. 1998;45(3):279–85.CrossRefGoogle Scholar
  39. Li W, Hui Z, Wang Y, et al. Assessment of genetic relationship of foxtail millet with its wild ancestor and close relatives by ISSR markers. J Integr Agric. 2012;11(4):556–66.CrossRefGoogle Scholar
  40. Liang H, Quan J. Biology and botany of foxtail millet. In: Li Y, editor. Foxtail millet breeding. Beijing: China Agricultural Press; 1997. p. 100–29.Google Scholar
  41. Linnaeus C. Species plantarum (vol. 1). Stockholm: Laurentii Salvii; 1753.Google Scholar
  42. Liu L, Ge W, Bestel S, et al. Plant exploitation of the last foragers at Shizitan in the Middle Yellow River Valley China: evidence from grinding stones. J Archaeol Sci. 2011;38(12):3524–32.CrossRefGoogle Scholar
  43. Liu L, Bestel S, Shi J, et al. Paleolithic human exploitation of plant foods during the last glacial maximum in North China. Proc Natl Acad Sci. 2013;110(14):5380–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lü H, Yang X, Ye M, et al. Culinary archaeology: millet noodles in late Neolithic China. Nature. 2005;437(7061):967–8.PubMedCrossRefGoogle Scholar
  45. Lü H, Zhang J, Liu K, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci. 2009;106(18):7367–72.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lü H, Li Y, Zhang J, et al. Component and simulation of the 4,000-year-old noodles excavated from the archaeological site of Lajia in Qinghai, China. Chin Sci Bull. 2014;59(35):5136–52.CrossRefGoogle Scholar
  47. Nesbitt M, Summers GD. Some recent discoveries of millet (Panicum miliaceum L. and Setaria italica (L.) P. Beauv.) at excavations in Turkey and Iran. Anatol Stud. 1988;38:85–97.CrossRefGoogle Scholar
  48. Pohl RW. The genus Setaria in Iowa. Iowa State J Sci. 1951;25:501–8.Google Scholar
  49. Pohl RW. The grasses of Iowa. Iowa State J Sci. 1966;40:341–73.Google Scholar
  50. Rao KEP, De Wet JMJ, Brink DE, et al. Infraspecific variation and systematics of cultivated Setaria italica, foxtail millet (Poaceae). Econ Bot. 1987;41(1):108–16.CrossRefGoogle Scholar
  51. Rominger JMD. Taxonomy of Setaria (Gramineae) in North America. Illinois Biol Monogr. 1962;29:1–118.Google Scholar
  52. Sakamoto S. Origin and dispersal of common millet and foxtail millet. Jpn Agr Res Q. 1987;21(22):84–9.Google Scholar
  53. Sergusheva EA, Vostretsov YE. The advance of agriculture in the coastal zone of East Asia. In: Fairbaim A, Weiss E, editors. From Forages to Farmers: papers in honor of Gordon C. Hillman. Oxford: Oxbow Books; 2009. p. 205–19.Google Scholar
  54. Shelach G. The earliest Neolithic cultures of Northeast China: recent discoveries and new perspectives on the beginning of agriculture. J World Prehist. 2000;14(4):363–413.CrossRefGoogle Scholar
  55. Sigaut F. Les millets en Eurasie, d’une fete populaire a des questions pour les chercheurs. Industries des Cereales. 1994;10:23–32.Google Scholar
  56. Smith CE. Plant remains. In: Byers DS, editor. The prehistory of the Tehuacán Valley. Austin: University of Texas Press; 1967. p. 220–55.Google Scholar
  57. Stapf O, Hubbard CK. Setaria. In: Prain D, editor. Flora of Tropical Africa, vol. 9. London: W. Clowes & Sons; 1930. p. 768–866.Google Scholar
  58. Takahashi N, Hoshino T. Natural crossing in Setaria italica (Beauv.). Proc Crop Sci Soc Jpn. 1934;6:3–19.CrossRefGoogle Scholar
  59. Till-Bottraud I, Reboud X, Brabant P, et al. Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet. 1992;83(8):940–6.PubMedCrossRefGoogle Scholar
  60. Vavilov NI. The origin of the cultivation of “primary” crops, in particular cultivated hemp. In: Vavilov N, editor. Studies on the origin of cultivated plants. Leningrad: Institute of Applied Botany and Plant Breeding; 1926. p. 221–33.Google Scholar
  61. Wang R, Wendel JF, Dekker JH. Weedy adaptation in Setaria spp. I. Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis. Am J Bot. 1995a;82(3):308–17.CrossRefGoogle Scholar
  62. Wang RL, Wendel JF, Dekker JH. Weedy adaptation in Setaria spp. II. Genetic diversity and population genetic structure in S. glauca, S. geniculata, and S. faberii (Poaceae). Am J Bot. 1995b;82(8):1031–9.CrossRefGoogle Scholar
  63. Wang ZM, Devos KM, Liu CJ, et al. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet. 1998;96(1):31–6.CrossRefGoogle Scholar
  64. Wang T, Zhao Z, Yan H, et al. Gene flow from cultivated herbicide-resistant foxtail millet to its wild relatives: a basis for risk assessment of the release of transgenic millet. Acta Agron Sin. 2001;27(6):681–7.Google Scholar
  65. Wang C, Chen J, Zhi H, et al. Population genetics of foxtail millet and its wild ancestor. BMC Genet. 2010;11(1):90.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wang C, Jia G, Zhi H, et al. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 Genes Genom Genet. 2012;2(7):769–77.Google Scholar
  67. Watt G. A Dictionary of the Economic Products of India (vols I–VI). Commercial Products of India: Calcutta; 1908.Google Scholar
  68. Wei S. The origin, domestication and spreading of Chinese foxtail millet. Anc Curr Agric. 1994;2:6–17.Google Scholar
  69. Willweber-Kishimoto E. Interspecific relationships in the genus Setaria. Contrib Biol Lab Kyoto Univ. 1962;14:1–41.Google Scholar
  70. Wu WW, Wang XH, Wu XH, et al. The early Holocene archaeobotanical record from the Zhangmatun site situated at the northern edge of the Shandong Highlands, China. Quat Int. 2014;348:183–93.CrossRefGoogle Scholar
  71. Yang X, Wan Z, Perry L, et al. Early millet use in northern China. Proc Natl Acad Sci. 2012;109(10):3726–30.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Zhang G, Liu X, Quan Z, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol. 2012;30(6):549–54.PubMedCrossRefGoogle Scholar
  73. Zhao Z. The process of origin of agriculture in China: archaeological evidence from flotation. Quat Sci. 2014;34:73–84.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations