Skip to main content

The Effect of Photoperiod on Flowering Time, Plant Architecture, and Biomass in Setaria

  • Chapter
  • First Online:
Genetics and Genomics of Setaria

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 19))

Abstract

The effect of photoperiods of 8 h (8:16 light:dark), 12 h (12:12), and 16 h (16:8) on flowering time, plant architecture, and biomass production were investigated in an RIL population derived from a cross between domesticated foxtail millet (Setaria italica) and its wild progenitor green foxtail (S. viridis). Flowering time, height, and biomass were found to be highly and positively correlated in all three photoperiod regimes. Branching, however, is weakly and variably associated with the other three traits. After the effects of variation in daily radiation and temperature were removed, ANOVA analyses of Photoperiod and RIL (genotype) found both factors and their interaction significant for all traits, with RIL and Photoperiod * RIL also explaining large amounts of variation. However, while Photoperiod by itself explained much of the variation in flowering time and in branching, it explained little of that for height and biomass. Regions were identified where all three trials identify QTL in the same genomic regions as well as QTL found in either the 8 and 12 h trials or the 12 and 16 h trials. This pattern may be evidence for differences in regulation between shorter and longer photoperiods. Comparison of QTL with previous greenhouse and field trials finds several overlapping QTL and multiple independent QTL. A well-supported QTL region on chromosome IV has been shown previously to contain a number of genes in the CONSTANS—FT pathway, and these results suggest that this pathway is conserved across photoperiods. Further genetic analysis of the multiple non-overlapping QTL regions between the photoperiod trials will be necessary to narrow down a list of candidate genes responsible for differences in flowering time and architecture between photoperiods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basten CJ, Weir BS, Zeng ZB, editors. Zmap-a QTL cartographer. 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software; 1994 August 7–12, Guelph, Ontario, Canada: Organizing Committee.

    Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB. QTL Cartographer Version 1.16 (1.16 ed.). Raleigh, NC: North Carolina State University; 2002.

    Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30(6):555–61.

    Article  CAS  PubMed  Google Scholar 

  • Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, et al. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet. 2010;6(5):e1000940.

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doerge RW, Churchill GA. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996;142(1):285–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA. Genetic control of branching in foxtail millet. Proc Natl Acad Sci U S A. 2004;101(24):9045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL. Foxtail millet: a sequence-driven grass model system. Plant Physiol. 2009;149(1):137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature. 2003;422(6933):719–22.

    Article  CAS  PubMed  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One. 2010;5(4):e10065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A. 2012;109(28):E1913–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 2002;16(15):2006–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RC, Stam P. High-resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994;136(4):1447–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia GQ, Huang XH, Zhi H, Zhao Y, Zhao Q, Li WJ, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet. 2013;45(8):957–61.

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development. 2009;136(20):3443–50.

    Article  CAS  PubMed  Google Scholar 

  • Lazakis CM, Coneva V, Colasanti J. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot. 2011;62(14):4833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li PH, Brutnell TP. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot. 2011;62(9):3031–7.

    Article  CAS  PubMed  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics. 2005;171(4):2013–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro-Herrera M, Doust AN. Development and genetic control of plant architecture and biomass in the Panicoid grass, Setaria. PLoS One. 2016;11(3):e0151346. doi:10.1371/journal.pone.0151346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauro-Herrera M, Wang XW, Barbier H, Brutnell TP, Devos KM, Doust AN. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). G3. 2013;3(2):283–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X, Muszynski MG, Danilevskaya ON. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell. 2011;23(3):942–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci U S A. 2011;108(39):16469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy RL, Morishige DT, Brady JA, Rooney WL, Yang SS, Klein PE, et al. Ghd7 (Ma(6)) represses Sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome. 2014;7(2):1–10.

    Article  Google Scholar 

  • Saha P, Blumwald E. Spike dip transformation of Setaria viridis. Plant J. 2016;86:89–101.

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T. Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol. 2010;13(5):594–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Eck J, Swartwood K. Setaria viridis. In: Wang K, editor. Agrobacterium protocols. 2. New York: Springer; 2015. p. 57–67.

    Google Scholar 

  • Vaughan DA, Lu BR, Tomooka N. The evolving story of rice evolution. Plant Sci. 2008;174(4):394–408.

    Article  CAS  Google Scholar 

  • Wolabu TW, Zhang F, Niu LF, Kalve S, Bhatnagar-Mathur P, Muszynski MG, et al. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol. 2016;210(3):946–59.

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Murphy RL, Morishige DT, Klein PE, Rooney WL, Mullet JE. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS One. 2014;9(8):e105352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB. Precision mapping of quantitative trait loci. Genetics. 1994;136(4):1457–68.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Jessica Stromski for phenotyping and plant care and Margarita Mauro-Herrera for genetic analyses and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Doust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doust, A.N. (2017). The Effect of Photoperiod on Flowering Time, Plant Architecture, and Biomass in Setaria. In: Doust, A., Diao, X. (eds) Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-45105-3_12

Download citation

Publish with us

Policies and ethics