Skip to main content

Thermal Interface Materials

  • Chapter
  • First Online:

Abstract

Increasing electronic device performance has historically been accompanied by increasing power and increasing on-chip power density both of which present a cooling challenge. Thermal interface material (TIM) plays a key role in reducing the package thermal resistance and the thermal resistance between the electronic device and the external cooling components. This chapter reviews the progress made in the TIM development in the past 5 years. Rheology-based modeling and design is discussed for the widely used polymeric TIMs. The recently emerging technology of nanoparticles and nanotubes is also discussed for TIM applications. This chapter also includes TIM testing methodology and concludes with suggestion for the future TIM development directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Acceleration factor

A c :

Actual contact area

A nc :

Non-contact area occupied by air gaps

BLT:

Bondline thickness

C :

Empirical constant in Eq. (12.7)

DF:

Density factor

E a :

Activation energy

G :

Shear modulus

G′:

Storage shear modulus

G″:

Loss shear modulus

H :

Hardness

K :

Consistency index in Eq. (12.5)

k c :

Thermal conductivity for composite

k m :

Thermal conductivity of the polymer matrix

k p :

Thermal conductivity of particles (fillers)

k TIM :

Thermal conductivity of the TIM

m :

Mean asperity slope

P :

Pressure

r :

Radius of the substrate

R b :

Thermal boundary resistance

R bulk :

Bulk thermal resistance

R c :

Contact resistance of TIM

R cs :

Contact resistance between two bare solids

RcTIM :

Contact resistance of an ideal TIM

R jc :

Junction to case thermal resistance

R TIM :

Thermal resistance of TIM (same as impedance)

Ψ cs :

Case to sink thermal resistance

Ψ J–a :

Junction to ambient thermal resistance

Ψ sa :

Sink to ambient thermal resistance

α :

Biot number

σ :

Surface roughness

τ y :

Yield stress of the TIM

ϕ :

Volume fraction of particles in TIMs

References

  1. Yovanovich MM, Marotta EE (2003) Thermal spreading and contact resistances. In: Bejan A, Kraus AD (eds) Heat transfer handbook. Wiley, Hoboken, pp 261–395

    Google Scholar 

  2. Madhusudana CV (1996) Thermal contact conductance. Springer, New York

    Book  Google Scholar 

  3. Iwabuchi A, Shimizu T, Yoshino Y, Abe T, Katagiri K, Nitta I, Sadamori K (1996) The development of a Vickers-type hardness tester for cryogenic temperatures down to 4.2 K. Cryogenics 36(2):75–81

    Article  Google Scholar 

  4. Lambert MA, Fletcher LS (2002) Thermal contact conductance of non-flat, rough, metallic coated metals. J Heat Transfer 124:405–412

    Article  Google Scholar 

  5. Prasher R (2001) Surface chemistry and characteristic based model for the thermal contact resistance of fluidic interstitial thermal interface materials. J Heat Transfer 123:969–975

    Article  Google Scholar 

  6. Mahajan R, Chiu C-P, Chrysler G (2006) Cooling a chip. Proc IEEE 94(8):1476–1486

    Article  Google Scholar 

  7. Watwe A, Prasher R (2001) Spreadsheet tool for quick-turn 3D numerical modeling of package thermal performance with non-uniform die heating. In: Proceedings of 2001 ASME international mechanical engineering congress and exposition, Paper No. 2-16-7-5, New York, 11–16 Nov 2001

    Google Scholar 

  8. Torresola J, Chrysler G, Chiu C, Mahajan R, Grannes D, Prasher R, Watwe A (2005) Density factor approach to representing die power map on thermal management. IEEE Trans Adv Packag 28(4):659–664

    Article  Google Scholar 

  9. Mahajan R, Chiu C-P, Prasher R (2004) Thermal interface materials: a brief review of design characteristics and materials. Electron Cooling 10(1):8

    Google Scholar 

  10. Prasher RS (2006) Thermal interface materials: historical perspective status and future directions. Proc IEEE 98(8):1571–1586

    Article  Google Scholar 

  11. Prasher RS, Koning P, Shipley J, Devpura A (2003) Dependence of thermal conductivity and mechanical rigidity of particle laden polymeric thermal interface materials on particle volume fraction. J Electron Packag 125(3):386–391

    Article  Google Scholar 

  12. Prasher RS, Shipley J, Prstic S, Koning P, Wang J-L (2003) Thermal resistance of particle laden polymeric thermal interface materials. J Heat Transfer 125(6):1170–11772003

    Article  Google Scholar 

  13. Prasher RS (2005) Rheology based modeling and design of particle laden polymeric thermal interface material. IEEE Trans Compon Packag Technol 28(2):230–237

    Article  Google Scholar 

  14. Prasher RS, Matayabus JC (2004) Thermal contact resistance of cured gel polymeric thermal interface materials. IEEE Trans Compon Packag Technol 27(4):702–709

    Article  Google Scholar 

  15. Prasher R, Phelan P (2006) Microscopic and macroscopic thermal contact resistances of pressed mechanical contacts. J Appl Phys 100:063538

    Article  Google Scholar 

  16. Sepehr A, Sahimi M (1988) Elastic properties of three-dimensional percolation networks with stretching and bond-bending forces. Phy Rev B 38(10):7173–7176

    Article  Google Scholar 

  17. Shenoy AV (1999) Rheology of filled polymer system. Kluwer Academic, Boston, pp 1–390

    Book  Google Scholar 

  18. Tansley TL, Maddison DS (1991) Conductivity degradation in oxygen polypyrrole. J Appl Phys 69(11):7711–7713

    Article  Google Scholar 

  19. Chiu C-P, Maveety JG, Tran QA (2002) Characterization of solder interfaces using laser flash metrology. Microelectron Reliab 42:93–100

    Article  Google Scholar 

  20. Pritchard LS, Acarnley PP, Johnson CM (2004) Effective thermal conductivity of porous solder layers. IEEE Trans Compon Packag Technol 27(2):259–267

    Article  Google Scholar 

  21. Hu X, Jiang L, Goodson KE (2004) Thermal characterization of eutectic alloy thermal interface materials with void-like inclusions. In: Proceedings of annual IEEE semiconductor thermal measurement and management symposium, 9–11 March 2004, San Jose, pp 98–103

    Google Scholar 

  22. Too SS, Touzelbav M, Khan M, Master R, Diep J, Keok K-H (2009) Indium thermal interface material development for microprocessors. In: Proceedings of the 25th annual international conference IEEE SEMI-THERM, pp 186–192

    Google Scholar 

  23. Chaowasakoo T, Ng TH, Songninluck J, Stern MB, Ankireddi S (2009) Indium solder as a thermal interface material using fluxless bonding technology. In: Proceedings of the 25th annual international conference IEEE SEMI-THERM symposium, pp 180–185

    Google Scholar 

  24. Dutta I, Raj R, Kumar P, Chen T, Nagaraj CM, Liu J, Renavukar M, Wakharkar V (2009) Liquid phase sintered solders with indium as minority phase for next generation thermal interface material applications. J Electron Mater 38(12):2735–2745

    Article  Google Scholar 

  25. Hamdan A, McLanahan A, Richards R, Richards C (2011) Characterization of liquid-metal microdroplet thermal interface material. Exp Therm Fluid Sci 35:1250–1254

    Article  Google Scholar 

  26. Roy CK, Bhavnani S, Hamilton MC, Johnson RW, Nguyen JL, Knight RW, Harris DK (2015) Investigation into the application of low melting temperature alloy as wet thermal interface materials. Int J Heat Mass Transfer 85:996–1002

    Article  Google Scholar 

  27. Conductive epoxy: pros and cons. Circuit Insight. http://www.circuitinsight.com/programs/49690.html

  28. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502

    Article  Google Scholar 

  29. Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fisher JE (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A Mater Sci Process 74:339–343

    Article  Google Scholar 

  30. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(2):2767–2769

    Article  Google Scholar 

  31. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  32. Liu CH, Huang H, Wu Y, Fan SS (2004) Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl Phys Lett 84(21):4248–4250

    Article  Google Scholar 

  33. Nan C-W, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85(16):3549–3551

    Article  Google Scholar 

  34. Huxtable S, Cahill DG, Shenogin S, Xue L, OZisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734

    Article  Google Scholar 

  35. Prasher RS (2008) Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 77:075424

    Article  Google Scholar 

  36. Hu X, Jiang L, Goodson KE (2004) Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions. In: 9th Intersociety conference on thermal and thermomechanical phenomena in electronic system, 1–4 June 2004, Las Vegas

    Google Scholar 

  37. Xu J, Fisher TS (2004) Enhanced thermal contact conductance using carbon nanotube arrays. In: 2004 Inter society conference on thermal phenomena, Las Vegas, pp 549–555

    Google Scholar 

  38. Hu X, Padilla A, Xu J, Fisher TS, Goodson KE (2006) 3-omega measurements vertically oriented carbon nanotubes on silicon. J Heat Transfer 128:1109–1113

    Article  Google Scholar 

  39. Xu J, Fisher TS (2004) Thermal contact conductance enhancement with carbon nanotube arrays. In: 2004 international mechanical engineering congress and exposition, Anaheim, 13–20 Nov 2004, Paper number IMECE2004-60185

    Google Scholar 

  40. Tong T, Zhao Y, Delzeit L, Kashani A, Meyyappan M, Majumdar A (2007) Dense vertically multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans Compon Packag Technol 30(1):92–100

    Article  Google Scholar 

  41. Wasniewski JR, Altman DH, Hodson SL, Fisher TS, Bulusu A, Graham S, Cola BA (2012) Characterization of metallically bonded carbon nanotube-based thermal interface materials using a high accuracy 1D steady-state technique. J Electron Packag 134:020901

    Article  Google Scholar 

  42. Barako MT, Gao Y, Marconnet AM, Asheghi M, Goodson KE (2012) Solder-bonded carbon nanotube thermal interface materials. In: 13th IEEE ITHERM conference, pp 1225–1232

    Google Scholar 

  43. Wang H, Feng JF, Hu XJ, Ng KM (2010) Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material. Chem Eng Sci 65:1101–1108

    Article  Google Scholar 

  44. Zhang P, Li Q, Xuan Y (2014) Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes. Compos Part A 57:1–7

    Article  Google Scholar 

  45. Peacock MA, Roy CK, Hamilton MC, Johnson RW, Knight RW, Harris DK (2016) Characterization of transferred vertically aligned carbon nanotubes array as thermal interface materials. Int J Heat Mass Transfer 97:94–100

    Article  Google Scholar 

  46. Barako MT, Gao Y, Won Y, Marconnet AM, Asheghi MA, Goodson KE (2014) Reactive metal bonding of carbon nanotube array for thermal interface application. IEEE Trans Compon Packag Manufact Technol 4(12):906–1913

    Article  Google Scholar 

  47. Irwin PC, Cao Y, Bansal A, Schadler LS (2003) Thermal and mechanical properties of polyimide nanocomposites. In: 2003 Annual report conference on electrical insulation and dielectric phenomena, pp 120–123

    Google Scholar 

  48. Fan L, Su B, Qu J, Wong CP (2004) Effects of nano-sized particles on electrical and thermal conductivities of polymer composites. In: 9th international symposium on advanced packaging materials, pp 193–199

    Google Scholar 

  49. Putnam SA, Cahill DG, Ash BJ, Schadler LS (2003) High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J Appl Phys 94(10):6785–6788

    Article  Google Scholar 

  50. Carlberg B, Wang T, Fu Y, Liu J, Shangguan D (2008) Nanostructured polymer-metal composite for thermal interface material application. In: Electronic components and technology conference, pp 191–197

    Google Scholar 

  51. Zanden C, Luo X, Ye L, Liu J (2013) Fabrication and characterization of a metal matrix polymer fibre composite for thermal interface material applications. In: 19th international workshop on thermal investigations of ICs and systems—therminic, pp 286–292

    Google Scholar 

  52. Carlberg B, Wang T, Liu J, Shangguan D (2009) Polymer-metal nano-composite films for thermal management. Microelectron Inter 26(2):28–36

    Article  Google Scholar 

  53. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet—epoxy composite thermal interface materials. J Phys Chem Lett 111:7565–7569

    Article  Google Scholar 

  54. Lin C, Chung DDL (2009) Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon 47:295–305

    Article  Google Scholar 

  55. Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells 965:1811–1818

    Article  Google Scholar 

  56. Shtein M, Nadiv R, Buzaglo M, Kahiland Oren Regev K (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects, Chem Mater 27:2100–2106

    Article  Google Scholar 

  57. Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340

    Article  Google Scholar 

  58. Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: application in thermal interface materials. Appl Phys Lett 100:073113

    Article  Google Scholar 

  59. Aoki R, Chiu C-P (1999) Testing apparatus for thermal interface materials. Proc SPIE Int Soc Opt Eng 3582:1036–1041

    Google Scholar 

  60. Solbrekken GL, Chiu C-P, Byers B, Reichebbacher D (2000) The development of a tool to predict package level thermal interface material performance. In: 7th Intersociety conference on thermal and thermomechanical phenomena in electronic systems, 2000. ITHERM 2000, vol 1, 23–26 May 2000, pp 48–54

    Google Scholar 

  61. Chiu C-P, Solbrekken GL, Young TM (2000) Thermal modeling and experimental validation of thermal interface performance between non-flat surfaces. In: 7th Intersociety conference on thermal and thermomechanical phenomena in electronic systems, 2000. ITHERM 2000, vol 1, 23–26 May, pp 52–62

    Google Scholar 

  62. Liu C, Chung DDL (2009) Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon 47:295–305

    Article  Google Scholar 

  63. Xu J, Munari A, Dalton E, Mathewson A, Razeeb KM (2009) Silver nanowire array-polymer composite as thermal interface material. J Appl Phys 106:124310

    Article  Google Scholar 

  64. Kempers R, Kolodner P, Lyons A, Robinson AJ (2009) A high-precision apparatus for the characterization of thermal interface materials. Rev Sci Instrum 80:095111

    Article  Google Scholar 

  65. Liu C, Chung DDL (2007) Nanostructured fumed metal oxides for thermal interface pastes. J Mater Sci 42:9245–9255

    Article  Google Scholar 

  66. Chiu C-P, Solbrekken G (1999) Characterization of thermal interface performance using transient thermal analysis technique. In: 1999 ISPS conference, San Diego

    Google Scholar 

  67. Smith B, Brunschwiler T, Michel B (2009) Comparison of transient and static test methods for chip-to-sink thermal interface characterization. Microelectron J 40:1379–1386

    Article  Google Scholar 

  68. Cola BA, Xu J, Cheng C, Xu X, Fisher TS, Hu H (2007) Photoacoustic characterization of carbon nanotube array thermal interface. J Appl Phys 101:054313

    Google Scholar 

  69. Cahill DG (2009) Thermal conductivity measurement from 30 to 750K: the 3-omega method. Rev Sci Instrum 61:802–808

    Article  Google Scholar 

  70. Burzo MG, Raad PE, Komarov PL, Wicaksono C, Yoi T (2013) Measurement of thermal conductivity of nanofluids and thermal interface materials using the laser-based transient thermoreflectance method. In: 29th IEEE SEMI-THERM symposium, pp 194–199

    Google Scholar 

  71. McNamara AJ, Sahu V, Joshi YK, Zhang ZM (2011) Infrared imaging microscope as an effective tool for measuring thermal resistance of emerging interface materials. In: ASME/JSME 2011 8th thermal engineering joint conference, Honolulu

    Google Scholar 

  72. Platek B, Falat T, Matkowski P, Felba J, Moscicki A (2014) Heat transfer through the interface containing sintered nanoAg based thermal interface material. In: 2014 electronics system-integration conference, Helsinki

    Google Scholar 

  73. Chiu C-P, Solbrekken GL, LeBonheur V, Xu YE (2000) Application of phase-change materials in Pentium® III and Pentium® III XeonTM processor cartridges. In: Proceedings international symposium on advanced packaging materials processes, properties and interfaces (Cat. No. 00TH8507), IMAPS—International Microelectronics and Packaging Society, Reston, pp 265–270

    Google Scholar 

  74. Goh TJ, Amir AN, Chiu C-P, Torresola J (2000) Cartridge thermal design of Pentium(R) III processor for workstation: giga hertz technology envelope extension challenges. In: Proceedings of 3rd electronics packaging technology conference (EPTC 2000) (Cat. No. 00EX456). Piscataway, IEEE, pp 65–71

    Google Scholar 

  75. Goh TJ, Amir AN, Chiu C-P, Torresola J (2001) Novel thermal validation metrology based on non-uniform power distribution for Pentium® III XeonTM cartridge processor design with integrated level two cache. In: Proceedings of 51st electronic components and technology conference, 29 May–1 June, pp 1181–1186

    Google Scholar 

  76. Chiu C-P, Chandran B, Mello K, Kelley K (2001) An accelerated reliability test method to predict thermal grease pump-out in flip-chip applications. In: Proceedings of 51st electronic components and technology conference, 29 May–1 June, pp 91–97

    Google Scholar 

  77. Morris GK, Polakowski MP, Wei L, Ball MD, Phillips MG (2015) Thermal interface material evaluation for IGBT modules under realistic power cycling conditions. In: 2015 IWIPD, pp 111–114

    Google Scholar 

  78. Bharatham L, Fong WS, Leong CJ, Chiu C-P (2006) A study of application pressure on thermal interface material performance and reliability on FCBGA package. In: International conference on electronic materials and packaging (EMAP), 11–14 Dec 2006

    Google Scholar 

  79. Due J, Robinson AJ (2013) Reliability of thermal interface materials: a review. Appl Therm Eng 50:455–463

    Article  Google Scholar 

  80. Samson E, Machiroutu S, Chang J-Y, Santos I, Hermarding J, Dani A, Prasher R, Song D, Puffo D (2005) Some thermal technology and thermal management considerations in the design of next generation IntelR CentrinoTM mobile technology platforms. Intel Technol J 9(1):75–86

    Google Scholar 

  81. He Y (2002) Rapid thermal conductivity measurement with a hot disk sensor: Part 1. theoretical considerations. In: Proceedings of the 30th North American thermal analysis society conference, 23–25 Sept 2002, Pittsburgh, pp 499–504

    Google Scholar 

  82. Standard test method for thermal transmission properties of thin thermally conductive solid electrical insulation materials. In: ASTM D5470-93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Pin Chiu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prasher, R., Chiu, CP. (2017). Thermal Interface Materials. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics