Skip to main content

Glutaminases

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

Mammalian glutaminases catalyze the stoichiometric conversion of l-glutamine to l-glutamate and ammonium ions. In brain, glutaminase is considered the prevailing pathway for synthesis of the neurotransmitter pool of glutamate. Besides neurotransmission, the products of glutaminase reaction also fulfill crucial roles in energy and metabolic homeostasis in mammalian brain. In the last years, new functional roles for brain glutaminases are being uncovered by using functional genomic and proteomic approaches. Glutaminases may act as multifunctional proteins able to perform different tasks: the discovery of multiple transcript variants in neurons and glial cells, novel extramitochondrial localizations, and isoform-specific proteininteracting partners strongly support possible moonlighting functions for these proteins. In this chapter, we present a critical account of essential works on brain glutaminase 80 years after its discovery. We will highlight the impact of recent findings and thoughts in the context of the glutamate/glutamine brain homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGC:

Aspartate–glutamate carrier

BBB:

Blood-brain barrier

EM:

Electron microscopy

GA:

Phosphate-activated glutaminase

GAB:

Gls2-encoded long GA isoform

GAC:

Gls-encoded short GA isoform

GAD:

Glutamic acid decarboxylase

GDH:

Glutamate dehydrogenase

GFAP:

Glial fibrillary acidic protein

GIP:

Glutaminase-interacting protein

GS:

Glutamine synthetase

IMM:

Inner mitochondrial membrane

KGA:

Gls-encoded long GA isoform

LGA:

Gls2-encoded short GA isoform

NBT:

Nitroblue tetrazolium

NMR:

Nuclear magnetic resonance

NPCs:

Neural progenitor cells

PDZ:

PSD95/Dlg/ZO1 domains

TCA:

Tricarboxylic acid cycle

References

  • Adams ME, Mueller HA, Froehner SC (2001) In vivo requirement of the alphasyntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J Cell Biol 155:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama H, Kaneko T, Mizuno N, McGeer PL (1990) Distribution of phosphate-activated glutaminase in the human cerebral cortex. J Comp Neurol 297:239–252

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Dolinska M, Hilgier W, Lipkowski AW, Nowacki J (2000) Modulation of glutamine uptake and phosphate-activated glutaminase activity in rat brain mitochondria by amino acids and their synthetic analogues. Neurochem Int 36:341–347

    Article  CAS  PubMed  Google Scholar 

  • Aledo JC, de Pedro E, Gómez-Fabre PM, Núñez de Castro I, Márquez J (1997) Submitochondrial localization and membrane topography of Ehrlich ascitic tumour cell glutaminase. Biochim Biophys Acta 1323:173–184

    Article  CAS  PubMed  Google Scholar 

  • Aledo JC, Gómez-Fabre PM, Olalla L, Márquez J (2000) Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome 11:1107–1110

    Article  CAS  PubMed  Google Scholar 

  • Aledo JC, Rosado A, Olalla L, Campos JA, Márquez J (2001) Overexpression, purification, and characterization of glutaminase-interacting protein, a PDZ domain protein from human brain. Protein Expr Purif 23:411–418

    Article  CAS  PubMed  Google Scholar 

  • Altschuler RA, Wenthold RJ, Schwartz AM, Haser WG, Curthoys NP, Parakkal MH et al (1984) Immunocytochemical localization of glutaminase-like immunoreactivity in the auditory nerve. Brain Res 291:173–178

    Article  CAS  PubMed  Google Scholar 

  • Altschuler RA, Monaghan DT, Haser WG, Wenthold RJ, Curthoys NP, Cotman CW (1985) Immunocytochemical localization of glutaminase-like and aspartate aminotransferase-like immunoreactivities in the rat and guinea pig hippocampus. Brain Res 330:225–233

    Article  CAS  PubMed  Google Scholar 

  • Amiry-Moghaddam M, Frydenlund DS, Ottersen OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Kaneko T, Starr A, Pickel VM (1991) Identification of mitochondrial and non-mitochondrial glutaminase within select neurons and glia of rat forebrain by electron microscopic immunocytochemistry. J Neurosci Res 28:531–548

    Article  CAS  PubMed  Google Scholar 

  • Arama J, Boulay AC, Bosc C, Delphin C, Loew D, Rostaing P et al (2012) Bmcc1s, a novel brain-isoform of Bmcc1, affects cell morphology by regulating MAP6/STOP functions. PLoS One 7:e35488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Bae N, Wang Y, Li L, Rayport S, Lubec G (2013) Network of brain protein level changes in glutaminase deficient fetal mice. J Proteomics 80:236–249

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Zieminska E, Waagepetersen HS, Schousboe A, Albrecht J (2008) Metabolism of [U-13C]Glutamine and [U-13C]Glutamate in isolated rat brain mitochondria suggests functional phosphate-activated glutaminase activity in matrix. Neurochem Res 33:273–278

    Article  CAS  PubMed  Google Scholar 

  • Banerjee M, Huang C, Marquez J, Mohanty S (2008) Probing the structure and function of human glutaminase-interacting protein: a possible target for drug design. Biochemistry 47:9208–9219

    Article  CAS  PubMed  Google Scholar 

  • Banner C, Hwang JJ, Shapiro RA, Wenthold RJ, Nakatani Y, Lampel KA, Thomas JW, Huie D, Curthoys NP (1988) Isolation of a cDNA for rat brain glutaminase. Brain Res 427:247–254

    Article  CAS  PubMed  Google Scholar 

  • Benjamin AM (1981) Control of glutaminase activity in rat brain cortex in vitro: influence of glutamate, phosphate, ammonium, calcium and hydrogen ions. Brain Res 208:363–377

    Article  CAS  PubMed  Google Scholar 

  • Benzinger T, Kitzinger C, Hems R, Burton K (1959) Free-energy changes of the glutaminase reaction and the hydrolysis of the terminal pyrophosphate bond of adenosine triphosphate. Biochem J 71:400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berckich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM (2007) Mitochondrial transport proteins of the brain. J Neurosci Res 85:3367–3377

    Article  CAS  Google Scholar 

  • Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate and GABA in the central nervous system. Liss, New York, pp 205–217

    Google Scholar 

  • Borg J, Spitz B, Hamel G, Mark J (1985) Selective culture of neurons from rat cerebral cortex: morphological characterization, glutamate uptake and related enzymes during maturation in various culture media. Brain Res 350:37–49

    Article  CAS  PubMed  Google Scholar 

  • Boulay AC, Burbassi S, Lorenzo HK, Loew D, Ezan P, Giaume C et al (2013) Bmcc1s interacts with the phosphate-activated glutaminase in the brain. Biochimie 95:799–807

    Article  CAS  PubMed  Google Scholar 

  • Bradford HF, Ward HK (1976) On glutaminase activity in mammalian synaptosomes. Brain Res 110:115–125

    Article  CAS  PubMed  Google Scholar 

  • Bradford HF, Ward HK, Thomas AJ (1978) Glutamine: a major substrate for nerve endings. J Neurochem 30:1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Bradford HF, Ward HK, Sandberg M (1984) Kinetic properties of glutaminase from cerebral cortex. Neurochem Res 9:751–757

    Article  CAS  PubMed  Google Scholar 

  • Bragg AD, Amiry-Moghaddam M, Ottersen OP, Adams ME, Froehner SC (2006) Assembly of a perivascular astrocyte protein scaffold at the mammalian blood–brain barrier is dependent on alpha-syntrophin. Glia 53:879–890

    Article  PubMed  Google Scholar 

  • Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Brookes N (1997) Intracellular pH as a regulatory signal in astrocyte metabolism. Glia 21:64–73

    Article  CAS  PubMed  Google Scholar 

  • Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci U S A 89:2115–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bungard CI, McGivan JD (2004) Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter. Biochem J 382:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschdorf JP, Chew LL, Zhang B, Cao Q, Liang FY, Liou YC et al (2006) Brain-specific BNIP-2-homology protein Caytaxin relocalises glutaminase to neurite terminals and reduces glutamate levels. J Cell Sci 119:3337–3350

    Article  CAS  PubMed  Google Scholar 

  • Campos JA, Aledo JC, del Castillo-Olivares A, del Valle AE, Núñez de Castro I, Márquez J (1998) Involvement of essential cysteine and histidine residues in the activity of isolated glutaminase from tumour cells. Biochim Biophys Acta 1429:275–283

    Article  CAS  PubMed  Google Scholar 

  • Campos-Sandoval JA, López de la Oliva AR, Lobo C, Segura JA, Matés JM, Alonso FJ, Márquez J (2007) Expression of functional human glutaminase in baculovirus system: affinity purification, kinetic and molecular characterization. Int J Biochem Cell Biol 39:765–773

    Article  CAS  PubMed  Google Scholar 

  • Cardona C, Sánchez-Mejías E, Dávila JC, Martín-Rufián M, Campos-Sandoval JA, Vitorica J et al (2015) Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 63:365–382

    Article  PubMed  Google Scholar 

  • Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS et al (2012) Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A 109:1092–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesler M, Kraig RP (1989) Intracellular pH transients of mammalian astrocytes. J Neurosci 9:2011–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu JF, Boeker EA (1979) Cow brain glutaminase: partial purification and mechanism of action. Arch Biochem Biophys 196:493–500

    Article  CAS  PubMed  Google Scholar 

  • Chung-Bok M-I, Vincent N, Jhala U, Watford M (1997) Rat hepatic glutaminase: identification of the full coding sequence and characterization of a functional promoter. Biochem J 324:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL et al (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 277:14801–14811

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Minelli A (1994) Glutamate immunoreactivity in rat cerebral cortex is reversibly abolished by 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activated glutaminase. J Histochem Cytochem 42:717–726

    Article  CAS  PubMed  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  CAS  PubMed  Google Scholar 

  • Curthoys NP, Weiss RF (1974) Regulation of renal ammoniagenesis. Subcellular localization of rat kidney glutaminase isoenzymes. J Biol Chem 249:3261–3266

    CAS  PubMed  Google Scholar 

  • Curthoys NP, Kuhlenschmidt T, Godfrey SS (1976) Regulation of renal ammoniagenesis. Purification and characterization of phosphate-dependent glutaminase from rat kidney. Arch Biochem Biophys 174:82–89

    Article  CAS  Google Scholar 

  • de la Rosa V, Campos-Sandoval JA, Martín-Rufián M, Cardona C, Matés JM, Segura JA, Alonso FJ, Márquez J (2009) A novel glutaminase isoform in mammalian tissues. Neurochem Int 55:76–84

    Article  PubMed  CAS  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104:19345–19350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, Jiang F, Song JJ, Wei W, Hurov JB (2011) Full-length human glutaminase in complex with an allosteric inhibitor. Biochemistry 50:10764–10770

    Article  CAS  PubMed  Google Scholar 

  • Donoghue JP, Wenthold RJ, Altschuler RA (1985) Localization of glutaminase-like and aspartate aminotransferase-like immunoreactivity in neurons of cerebral neocortex. J Neurosci 5:2597–2608

    CAS  PubMed  Google Scholar 

  • Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF (1999) Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics 1:51–62

    CAS  PubMed  Google Scholar 

  • Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:12–19

    Article  Google Scholar 

  • Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    Article  CAS  PubMed  Google Scholar 

  • Erecinska M, Zaleska MM, Nelson D, Nissim I, Yudkoff M (1990) Neuronal glutamine utilization: glutamine/glutamate homeostasis in synaptosomes. J Neurochem 54:2057–2069

    Article  CAS  PubMed  Google Scholar 

  • Errera M, Greenstein JP (1949) Phosphate-activated glutaminase in kidney and other tissues. J Biol Chem 178:495–502

    CAS  PubMed  Google Scholar 

  • Fergus A, Lee KS (1997) Regulation of cerebral microvessels by glutamatergic mechanisms. Brain Res 754:35–45

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AP, Cassago A, Gonçalves Kde A, Dias MM, Adamoski D, Ascenção CF et al (2013) Active glutaminase C self-assembles into a supratetrameric oligomer that can be disrupted by an allosteric inhibitor. J Biol Chem 288:28009–28020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RS (2007) Co-localization of glutamic acid decarboxylase and phosphate-activated glutaminase in neurons of lateral reticular nucleus in feline thalamus. Neurochem Res 32:177–186

    Article  CAS  PubMed  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fonseca LL, Monteiro MAR, Alves PM, Carrondo MJT, Santos H (2005) Cultures of rat astrocytes challenged with a steady supply of glutamate: new model to study flux distribution in the glutamate-glutamine cycle. Glia 51:286–296

    Article  PubMed  Google Scholar 

  • Gamberino WC, Berkich DA, Lynch CJ, Xu B, LaNoue KF (1997) Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69:2312–2325

    Article  CAS  PubMed  Google Scholar 

  • Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ et al (2013) p63 regulates glutaminase 2 expression. Cell Cycle 12:1395–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey S, Kuhlenschmidt T, Curthoys P (1977) Correlation between activation and dimer formation of rat renal phosphate-dependent glutaminase. J Biol Chem 252:1927–1931

    CAS  PubMed  Google Scholar 

  • Godfrey DA, Ross CD, Parli JA, Carlson L (1994) Aspartate aminotransferase and glutaminase activities in rat olfactory bulb and cochlear nucleus; comparisons with retina and with concentrations of substrate and product amino acids. Neurochem Res 19:693–703

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Fabre PM, Aledo JC, del Castillo-Olivares A, Alonso FJ, Núñez de Castro I, Campos JA, Márquez J (2000) Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem J 345:365–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Guha SR (1961) Intercellular localization of glutaminase I in rat liver. Enzymologia 23:94–100

    CAS  PubMed  Google Scholar 

  • Hamberger AC, Chiang GH, Nylén ES, Scheff SW, Cotman CW (1979) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res 168:513–530

    Article  CAS  PubMed  Google Scholar 

  • Haser WG, Shapiro RA, Curthoys NP (1985) Comparison of the phosphate-dependent glutaminase obtained from rat brain and kidney. Biochem J 229:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133:269–275

    Article  PubMed  Google Scholar 

  • Häussinger D, Schliess F (2007) Glutamine metabolism and signaling in the liver. Front Biosci 12:371–391

    Article  PubMed  Google Scholar 

  • Häussinger D, Sies H (1979) Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur J Biochem 101:179–184

    Article  PubMed  Google Scholar 

  • Hawkins RA (2009) The blood-brain barrier and glutamate. Am J Clin Nutr 90(Suppl):867S–874S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    Article  CAS  PubMed  Google Scholar 

  • Heini HG, Gebhardt R, Brecht A, Mecke D (1987) Purification and characterization of rat liver glutaminase. Eur J Biochem 162:541–546

    Article  CAS  PubMed  Google Scholar 

  • Hertz L (1979) Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 13:277–323

    Article  CAS  PubMed  Google Scholar 

  • Hertz L (2004) Intercellular metabolic compartmentation in the brain: past, present and future. Neurochem Int 45:285–296

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  CAS  PubMed  Google Scholar 

  • Hogstad S, Svenneby G, Torgner IA, Kvamme E, Hertz L, Schousboe A (1988) Glutaminase in neurons and astrocytes cultured from mouse brain: kinetic properties and effects of phosphate, glutamate, and ammonia. Neurochem Res 13:383–388

    Article  CAS  PubMed  Google Scholar 

  • Holcenberg JS, Borella LD, Camitta BM, Ring BJ (1979) Human pharmacology and toxicology of succinylated Acinetobacter glutaminase-asparaginase. Cancer Res 39:3145–3151

    CAS  PubMed  Google Scholar 

  • Holcomb T, Taylor L, Trohkimoinen J, Curthoys NP (2000) Isolation, characterization and expression of a human brain mitochondrial glutaminase cDNA. Brain Res Mol Brain Res 76:56–63

    Article  CAS  PubMed  Google Scholar 

  • Hozumi Y, Ito T, Nakano T, Nakagawa T, Aoyagi M, Kondo H et al (2003) Nuclear localization of diacylglycerol kinase zeta in neurons. Eur J Neurosci 18:1448–1457

    Article  PubMed  Google Scholar 

  • Hsueh YP, Wang TF, Yang FC, Sheng M (2000) Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature 404:298–302

    Article  CAS  PubMed  Google Scholar 

  • Huang YZ, Knox WE (1976) A comparative study of glytaminase isozymes in rat tissues. Enzyme 21:408–426

    CAS  PubMed  Google Scholar 

  • Hutson SM, Berkich D, Drown P, Xu B, Aschner M, LaNoue KF (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem 71:863–874

    Article  CAS  PubMed  Google Scholar 

  • Jalil MA, Begum L, Contreras L, Pardo B, Iijima M, Li MX et al (2005) Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J Biol Chem 280:31333–31339

    Article  CAS  PubMed  Google Scholar 

  • Kalra J, Brosnan JT (1974) The subcellular localization of glutaminase isoenzymes in rat kidney cortex. J Biol Chem 249:3255–3260

    CAS  PubMed  Google Scholar 

  • Kam K, Nicoll R (2007) Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J Neurosci 27:9192–9200

    Article  CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD (1995) In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance. Biochem J 305:329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamori M, Sandy P, Marzinotto S, Benetti R, Kai C, Hayashizaki Y et al (2003) The PDZ protein tax-interacting protein-1 inhibits beta-catenin transcriptional activity and growth of colorectal cancer cells. J Biol Chem 278:38758–38764

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T (2000) Enzymes responsible for glutamate synthesis and degradation. In: Ottersen OP, Storm-Mathisen J (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 203–230

    Google Scholar 

  • Kaneko T, Mizuno N (1988) Immunohistochemical study of glutaminase-containing neurons in the cerebral cortex and thalamus of the rat. J Comp Neurol 267:590–602

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Mizuno N (1992) Mosaic distribution of phosphate-activated glutaminase-like immunoreactivity in the rat striatum. Neuroscience 49:329–345

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Mizuno N (1994) Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience 61:839–849

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Mizuno N (1996) Spiny stellate neurons in layer VI of the rat cerebral cortex. Neuroreport 7:2331–2335

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Urade Y, Watanabe Y, Mizuno N (1987) Production, characterization, and immunohistochemical application of monoclonal antibodies to glutaminase purified from rat brain. J Neurosci 7:302–309

    CAS  PubMed  Google Scholar 

  • Kaneko T, Itoh K, Shigemoto R, Mizuno N (1989) Glutaminase-like immunoreactivity in the lower brainstem and cerebellum of the adult rat. Neuroscience 32:79–98

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Akiyama H, Nagatsu I, Mizuno N (1990) Immunohistochemical demonstration of glutaminase in catecholaminergic and serotoninergic neurons of rat brain. Brain Res 507:151–154

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakaya Y, Mizuno N (1992) Paucity of glutaminase-immunoreactive nonpyramidal neurons in the rat cerebral cortex. J Comp Neurol 322:181–190

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Kang Y, Mizuno N (1995) Glutaminase-positive and glutaminase-negative pyramidal cells in layer VI of the primary motor and somatosensory cortices: a combined analysis by intracellular staining and immunocytochemistry in the rat. J Neurosci 15:8362–8377

    CAS  PubMed  Google Scholar 

  • Kausalya PJ, Phua DC, Hunziker W (2004) Association of ARVCF with zonula occludens (ZO)-1 and ZO-2: binding to PDZ-domain proteins and cell-cell adhesion regulate plasma membrane and nuclear localization of ARVCF. Mol Biol Cell 15:5503–5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100:307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Kovacevic Z, McGivan JD (1983) Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63:547–605

    CAS  PubMed  Google Scholar 

  • Krebs HA (1935) The synthesis of glutamine from glutamate and ammonia, and the enzymatic hydrolysis of glutamine in animal tissues. Biochem J 29:1951–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvamme E (1984) Enzymes of cerebral glutamine metabolism. In: Häussinger D, Sies H (eds) Glutamine metabolism in mammalian tissues. Springer, Berlin, pp 32–48

    Chapter  Google Scholar 

  • Kvamme E (1998) Synthesis of glutamate and its regulation. Prog Brain Res 116:73–85

    Article  CAS  PubMed  Google Scholar 

  • Kvamme E, Olsen BE (1979) Evidence for two species of mammalian phosphate-activated glutaminase having different regulatory properties. FEBS Lett 107:33–36

    Article  CAS  PubMed  Google Scholar 

  • Kvamme E, Olsen BE (1981) Evidence for compartmentation of synaptosomal phosphate-activated glutaminase. J Neurochem 36:1916–1923

    Article  CAS  PubMed  Google Scholar 

  • Kvamme E, Tveit B, Svenneby G (1970) Glutaminase from pig renal cortex. I. Purification and general properties. J Biol Chem 245:1871–1877

    CAS  PubMed  Google Scholar 

  • Kvamme E, Svenneby G, Hertz L, Schousboe A (1982) Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem Res 7:761–770

    Article  CAS  PubMed  Google Scholar 

  • Kvamme E, Svenneby G, Torgner IA (1983) Calcium stimulation of glutamine hydrolysis in synaptosomes from rat brain. Neurochem Res 8:25–38

    Article  CAS  PubMed  Google Scholar 

  • Kvamme E, Torgner IA, Roberg B (1991) Evidence indicating that pig renal phosphate-activated glutaminase has a functionally predominant external localization in the inner mitochondrial membrane. J Biol Chem 266:13185–13192

    CAS  PubMed  Google Scholar 

  • Kvamme E, Roberg B, Torgner IA (2000) Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res 25:1407–1419

    Article  CAS  PubMed  Google Scholar 

  • Laake JH, Slyngstad TA, Haug FM, Ottersen OP (1995) Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures. J Neurochem 65:871–881

    Article  CAS  PubMed  Google Scholar 

  • Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S et al (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-Z, Yang C-W, Chang HY, Hsu H-Y, Chen I-S, Chang H-S et al (2014) Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget 5:6087–6101

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohmann R, Souba WW, Bode BP (1999) Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells. Am J Physiol 276:G743–G750

    CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 14:177–182

    CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  CAS  PubMed  Google Scholar 

  • Magnusson KR, Larson AA, Madl JE, Altschuler RA, Beitz AJ (1986) Co-localization of fixative-modified glutamate and glutaminase in neurons of the spinal trigeminal nucleus of the rat: an immunohistochemical and immunoradiochemical analysis. J Comp Neurol 247:477–490

    Article  CAS  PubMed  Google Scholar 

  • Manns ID, Mainville L, Jones BE (2001) Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience 107:249–263

    Article  CAS  PubMed  Google Scholar 

  • Márquez J, López de la Oliva AR, Matés JM, Segura JA, Alonso FJ (2006) Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem Int 48:465–471

    Article  PubMed  CAS  Google Scholar 

  • Márquez J, Tosina M, de la Rosa V, Segura JA, Alonso FJ, Matés JM et al (2009) New insights into brain glutaminases: beyond their role on glutamatergic transmission. Neurochem Int 55:64–70

    Article  PubMed  CAS  Google Scholar 

  • Márquez J, Matés JM, Alonso FJ, Martín-Rufián M, Lobo C, Campos-Sandoval JA (2015) Canceromics studies unravel tumor’s glutamine addiction after metabolic reprogramming. In: Mazurek S, Shoshan M (eds) Tumor cell metabolism. Pathways, regulation and biology. Springer, Wien, pp 257–287

    Google Scholar 

  • Martín-Rufián M, Tosina M, Campos-Sandoval JA, Manzanares E, Lobo C, Segura JA et al (2012) Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One 7, e38380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masson J, Darmon M, Conjard A, Chuhma N, Ropert N, Thoby-Brisson M et al (2006) Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J Neurosci 26:4660–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matés JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, Márquez J (2009) Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 41:2051–2061

    Article  PubMed  CAS  Google Scholar 

  • Matés JM, Segura JA, Martín-Rufián M, Campos-Sandoval JA, Alonso FJ, Márquez J (2013) Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 13:514–534

    Article  PubMed  Google Scholar 

  • McGivan JD, Bradford NM (1983) Characteristics of the activation of glutaminase by ammonia in sonicated rat liver mitochondria. Biochim Biophys Acta 759:296–302

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Hopkins IB (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  • Medina MA, Quesada AR, Márquez FJ, Sánchez-Jiménez F, Núñez de Castro I (1988) Inorganic phosphate and energy charge compartmentation in Ehrlich ascites tumor cells in the presence of glucose and/or glutamine. Biochem Int 16:713–718

    CAS  PubMed  Google Scholar 

  • Meertens LM, Miyata KS, Cechetto JD, Rachubinski RA, Capone JP (1998) A mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARα. EMBO J 17:6972–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock B, Kozak C, Seldin MF, Ruff N, D’Hoostelaere L, Szpirer C, Levan G, Seuanez H, O’Brien S, Banner C (1989) A glutaminase (gls) gene maps to mouse chromosome 1, rat chromosome 9, and human chromosome 2. Genomics 5:291–297

    Article  CAS  PubMed  Google Scholar 

  • Morehouse RF, Curthoys NP (1981) Properties of rat renal phosphate-dependent glutaminase coupled to Sepharose. Evidence that dimerization is essential for activation. Biochem J 193:709–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagase T, Ishikawa K, Suyama M, Kikuno R, Hirosawa M, Miyajima N et al (1998) Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 5:355–364

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3:748–755

    Article  CAS  PubMed  Google Scholar 

  • Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 98:14108–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicklas WJ, Zeevalk G, Hyndman A (1987) Interactions between neurons and glia in glutamate/glutamine compartmentation. Biochem Soc Trans 15:208–210

    Article  CAS  PubMed  Google Scholar 

  • Nimmo GA, Tipton KF (1979) The distribution of soluble and membrane-bound forms of glutaminase in pig brain. J Neurochem 33:1083–1084

    Article  CAS  PubMed  Google Scholar 

  • Nimmo GA, Tipton KF (1980) Purification of soluble glutaminase from pig brain. Biochem Pharmacol 29:359–367

    Article  CAS  PubMed  Google Scholar 

  • Nimmo GA, Tipton KF (1981) Kinetic comparisons between soluble and membrane-bound glutaminase preparations from pig brain. Eur J Biochem 117:57–64

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Martínez-Hernández A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  • Olalla L, Aledo JC, Bannenberg G, Márquez J (2001) The C-terminus of human glutaminase L mediates association with PDZ domain-containing proteins. FEBS Lett 488:116–122

    Article  CAS  PubMed  Google Scholar 

  • Olalla L, Gutiérrez A, Campos JA, Khan ZU, Alonso F, Segura JA, Márquez J, Aledo JC (2002) Nuclear localization of L-glutaminase in mammalian brain. J Biol Chem 277:38939–38944

    Article  CAS  PubMed  Google Scholar 

  • Olalla L, Gutiérrez A, Jiménez AJ, López-Téllez JF, Khan ZU, Pérez J, Alonso FJ, de la Rosa V, Campos-Sandoval JA, Segura JA, Aledo JC, Márquez J (2008) Expression of scaffolding PDZ protein GIP (glutaminase-interacting-protein) in mammalian brain. J Neurosci Res 86:281–292

    Article  CAS  PubMed  Google Scholar 

  • Patel M, McGivan JD (1984) Partial purification and properties of rat liver glutaminase. Biochem J 220:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera SY, Voith DM, Curthoys NP (1991) Biosynthesis and processing of mitochondrial glutaminase in HTC hepatoma cells. Biochem J 273:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Gómez C, Matés JM, Gómez-Fabre PM, del Castillo-Olivares A, Alonso FJ, Márquez J (2003) Genomic organization and transcriptional analysis of the human L-glutaminase gene. Biochem J 370:771–784

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Gómez C, Campos-Sandoval JA, Alonso FJ, Segura JA, Manzanares E, Ruiz-Sánchez P, González ME, Márquez J, Matés JM (2005) Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem J 386:535–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilowsky P, Sun QJ, Llewellyn-Smith I, Arnolda L, Chalmers J, Minson J (1997) Phosphate-activated glutaminase immunoreactivity in brainstem respiratory neurons. J Auton Nerv Syst 63:85–90

    Article  CAS  PubMed  Google Scholar 

  • Porter LD, Ibrahim H, Taylor L, Curthoys NP (2002) Complexity and species variation of the kidney-type glutaminase gene. Physiol Genomics 9:57–66

    Article  Google Scholar 

  • Quesada AR, Sánchez-Jiménez F, Pérez-Rodríguez J, Márquez J, Medina MA, Núñez de Castro I (1988) Purification of phosphate-dependent glutaminase from isolated mitochondria of Ehrlich ascites-tumour cells. Biochem J 255:1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos M, del Arco A, Pardo B, Martínez-Serrano A, Martínez-Morales JR, Kobayashi K et al (2003) Developmental changes in the Ca2+-regulated mitochondrial aspartate–glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Dev Brain Res 143:33–46

    Article  CAS  Google Scholar 

  • Resendes MC, Dobransky T, Ferguson SS, Rylett RJ (1999) Nuclear localization of the 82-kDa form of human choline acetyltransferase. J Biol Chem 274:19417–19421

    Article  CAS  PubMed  Google Scholar 

  • Roberg B, Torgner IA, Kvamme E (1995) The orientation of phosphate activated glutaminase in the inner mitochondrial membrane of synaptic and non-synaptic rat brain mitochondria. Neurochem Int 27:367–376

    Article  CAS  PubMed  Google Scholar 

  • Roberg B, Torgner IA, Kvamme E (1999) Inhibition of glutamine transport in rat brain mitochondria by some amino acids and tricarboxylic acid cycle intermediates. Neurochem Res 24:811–816

    Google Scholar 

  • Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK et al (2007) Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 406:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG (1999) In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Phil Trans R Soc Lond B 354:1165–1177

    Article  CAS  Google Scholar 

  • Sachdev S, Hoffmann A, Hannink M (1998) Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol Cell Biol 18:2524–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satrústegui J, Contreras L, Ramos M, Marmol P, del Arco A, Saheki T et al (2007) Role of aralar, the mitochondrial transporter of aspartate–glutamate, in brain N-acetylaspartate formation and Ca2+ signaling in neuronal mitochondria. J Neurosci Res 85:3359–3366

    Article  PubMed  CAS  Google Scholar 

  • Schalk AM, Nguyen HA, Rigouin C, Lavie A (2014) Identification and structural analysis of an L-asparaginase enzyme from guinea pig with putative tumor cell killing properties. J Biol Chem 289:33175–33186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    Article  CAS  PubMed  Google Scholar 

  • Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316

    Article  CAS  PubMed  Google Scholar 

  • Segura JA, Aledo JC, Gómez-Biedma S, Núñez de Castro I, Márquez J (1995) Tumor glutaminase purification. Protein Expr Purif 6:343–351

    Article  CAS  PubMed  Google Scholar 

  • Senba E, Kaneko T, Mizuno N, Tohyama M (1991) Somato-, branchio- and viscero-motor neurons contain glutaminase-like immunoreactivity. Brain Res Bull 26:85–97

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RA, Morehouse RF, Curthoys NP (1982) Inhibition by glutamate of phosphate-dependent glutaminase of rat kidney. Biochem J 207:561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro RA, Haser WG, Curthoys NP (1985) The orientation of phosphate-dependent glutaminase on the inner membrane of rat renal mitochondria. Arch Biochem Biophys 243:1–7

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RA, Haser WG, Curthoys NP (1987) Immunoblot analysis of glutaminase peptides in intact and solubilized mitochondria isolated from various rat tissues. Biochem J 242:743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro RA, Farrell L, Srinivasan M, Curthoys NP (1991) Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem 266:18792–18796

    CAS  PubMed  Google Scholar 

  • Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A 96:8235–8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  • Smith EM, Watford M (1988) Rat hepatic glutaminase: purification and immunochemical characterization. Arch Biochem Biophys 260:740–751

    Article  CAS  PubMed  Google Scholar 

  • Smith EM, Watford M (1990) Molecular cloning of a cDNA for rat hepatic glutaminase. Sequence similarity to kidney-type glutaminase. J Biol Chem 265:10631–10636

    CAS  PubMed  Google Scholar 

  • Snodgrass PJ, Lund P (1984) Allosteric properties of phosphate-activated glutaminase of human liver mitochondria. Biochim Biophys Acta 798:21–27

    Article  CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation—where do all the carbons go? J Neurochem 131:399–406

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Stalnecker CA, Ulrich SM, Li Y, Ramachandran S, McBrayer MK, DeBerardinis RJ, Cerione RA et al (2015) Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc Natl Acad Sci U S A 112:394–399

    Article  CAS  PubMed  Google Scholar 

  • Svenneby G (1971) Activation of pig brain glutaminase. J Neurochem 18:2201–2208

    Article  CAS  PubMed  Google Scholar 

  • Svenneby G (1972) Time- and temperature-dependent activation of pig brain glutaminase. J Neurochem 19:165–174

    Article  CAS  PubMed  Google Scholar 

  • Svenneby G, Torgner I, Kvamme E (1973) Purification of phosphate-dependent pig brain glutaminase. J Neurochem 20:1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Svenneby G, Roberg B, Hogstad S, Torgner IAA, Kvamme E (1986) Phosphate-activated glutaminase in the crude mitochondrial fraction (P2 fraction) from human brain cortex. J Neurochem 47:1351–1355

    Article  CAS  PubMed  Google Scholar 

  • Szeliga M, Matyja E, Obara M, Grajkowska W, Czernicki T, Albrecht J (2008) Relative expression of mRNAs coding for glutaminase isoforms in CNS tissues and CNS tumors. Neurochem Res 33:808–813

    Article  CAS  PubMed  Google Scholar 

  • Szeliga M, Obara-Michlewska M, Matyja E, Lazarczyk M, Lobo C, Hilgier W et al (2009) Transfection with liver-type glutaminase (LGA) cDNA alteres gene expression and reduces viability, migration and proliferation of T98G glioma cells. Glia 57:1014–1023

    Article  PubMed  Google Scholar 

  • Takeda K, Ishida A, Takahashi K, Ueda T (2012) Synaptic vesicles are capable of synthesizing the VGLUT substrate glutamate from α-ketoglutarate for vesicular loading. J Neurochem 121:184–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R et al (2006) Tumor necrosis factor-a induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368

    Article  CAS  PubMed  Google Scholar 

  • Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V et al (2012) Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci U S A 109:7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanki CM, Sugden D, Thomas AJ, Bradford HF (1983) In vivo release from cerebral cortex of [14C]glutamate synthesized from [U-14C]glutamine. J Neurochem 41:611–617

    Article  CAS  PubMed  Google Scholar 

  • Thomas AG, Rojas C, Tanega C, Shen M, Simeonov A, Boxer MB et al (2013) Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem Biophys Res Commun 438:243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turman JE Jr, Chandler SH (1994) Immunohistochemical localization of glutamate and glutaminase in guinea pig trigeminal premotoneurons. Brain Res 634:49–61

    Article  CAS  PubMed  Google Scholar 

  • Turner A, McGivan JD (2003) Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas. Biochem J 370:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Gucht E, Jacobs S, Kaneko T, Vandesande F, Arckens L (2003) Distribution and morphological characterization of phosphate-activated glutaminase-immunoreactive neurons in cat visual cortex. Brain Res 988:29–42

    Article  PubMed  CAS  Google Scholar 

  • Velletri T, Romeo F, Tucci P, Peschiaroli A, Annicchiarico-Petruzzelli M, Niklison-Chirou MV et al (2013) GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle 12:1–10

    Article  CAS  Google Scholar 

  • Verhoeven AJ, van Iwaarden JF, Joseph SK, Meijer AJ (1983) Control of rat-liver glutaminase by ammonia and pH. Eur J Biochem 133:241–244

    Article  CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Qu H, Sonnewald U, Shimamoto K, Schousboe A (2005) Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochem Int 47:92–102

    Article  CAS  PubMed  Google Scholar 

  • Wallace DR, Dawson R Jr (1992) Ammonia regulation of phosphate-activated glutaminase displays regional variation and impairment in the brain of aged rats. Neurochem Res 17:1113–1122

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang Y, Zhao L, Li Y, Zheng J (2014) Glutaminase 1 is essential for the differentiation, proliferation, and survival of human neural progenitor cells. Stem Cells Dev 23:2782–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward HK, Bradford HF (1979) Relative activities of glutamine synthetase and glutaminase in mammalian synaptosomes. J Neurochem 33:339–342

    Article  CAS  PubMed  Google Scholar 

  • Wenthold RJ, Skaggs KK, Altschuler RA (1986) Immunocytochemical localization of aspartate aminotransferase and glutaminase immunoreactivities in the cerebellum. Brain Res 363:371–375

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw BS, Robinson MB (2013) Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front Endocrinol 4:123

    Article  Google Scholar 

  • Willoughby D, Schwiening CJ (2002) Electrically evoked dendritic pH transients in rat cerebellar Purkinje cells. J Physiol 544:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würdig S, Kugler P (1991) Histochemistry of glutamate metabolizing enzymes in the rat cerebellar cortex. Neurosci Lett 130:165–168

    Article  PubMed  Google Scholar 

  • Yamaguchi S, Jeenes DJ, Archer DB (2001) Protein-glutaminase from Chryseobacterium proteolyticum, an enzyme that deamidates glutaminyl residues in proteins. Purification, characterization and gene cloning. Eur J Biochem 268:1410–1421

    Article  CAS  PubMed  Google Scholar 

  • Yezierski RP, Kaneko T, Miller KE (1993) Glutaminase-like immunoreactivity in rat spinomesencephalic tract cells. Brain Res 624:304–308

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Zaleska MM, Nissim I, Nelson D, Erecinska M (1989) Neuronal glutamine utilization: pathways of nitrogen transfer studied with [15N]glutamine. J Neurochem 53:632–640

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Yeung PL, Li CW, Tsai SC, Dinh GK, Wu X et al (2004) Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. J Biol Chem 279:33799–33805

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to everybody in the Canceromics group for creating most of the own work described in this chapter, particularly to our colleagues F.J. Alonso, J.A. Segura, M. Martín-Rufián, C. Cardona, C. Lobo, A. Peñalver, and former members L. Olalla, P. Gómez-Fabre, C. Pérez-Gómez, and J.C. Aledo. The excellent collaboration of Dr. Antonia Gutiérrez and her team is also gratefully acknowledged. We are in debt with Dr. Alfonso Gutiérrez-Adán, Dr. Fernando Rodríguez de Fonseca, and Dr. Emilio Ambrosio for helpful discussions and collaborations with animal models. This work was supported by Excellence Grant CVI-6656 (Regional Andalusian government) and Grant RD12/0028/0013 of the RTA RETICS network from the Spanish Health Institute Carlos III. Thanks are due to Mrs. Kristina Pačesaitė for the design of the graphic work and to Mrs. Laura Castilla for excellent technical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Márquez, J., Matés, J.M., Campos-Sandoval, J.A. (2016). Glutaminases. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_6

Download citation

Publish with us

Policies and ethics