Enterohemorrhagic (Shiga Toxin-Producing) Escherichia coli

  • Marta RivasEmail author
  • Isabel Chinen
  • Beatriz E. C. Guth


Enterohemorrhagic (Shiga toxin-producing) Escherichia coli (EHEC/STEC) is a zoonotic food- and waterborne pathogen that can cause human infections ranging from asymptomatic carriage or mild diarrhea to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). The isolates belong to a large number of O:H serotypes, and O157:H7 is the most prevalent serotype associated with large outbreaks and sporadic cases of HC and HUS in many countries. Advances on the knowledge of microbial pathogenesis, pathophysiology of the associated diseases, epidemiology, and risk factors have contributed to the development of several strategies trying to prevent food and environment contamination, and consequently transmission to humans. However, prevention of EHEC (STEC) infection has been difficult because of the broad spectrum of contaminated sources and the limited effectiveness of the different interventions used. The availability of effective vaccines to reduce carriage in livestock as well as for preventing human disease is a pending challenge. Specific targeted therapies against this pathogen group are another area of concern. A new risk scenario has emerged in the last decades due to the bacterial evolution that gave rise to the emergence of hypervirulent O157 clones with a worldwide distribution and other EHEC (STEC) strains with unusual combinations of pathogenic features, such as the O104:H4 strain. Because of the severity and the long-term sequelae of EHEC (STEC)-associated illnesses, they have a high social and economic cost for both the affected families and the health system. Therefore, all efforts should be directed to reduce the burden of these diseases.


EHEC/STEC Pathogenesis Prevention and treatment Emergent clones Surveillance 



The data reported here is a summary of the efforts of many individuals and working groups in Latin America. Special thanks to E. Damiani, D. Montiveros (INLASA, Bolivia); V. Dias Gonçalves, M. Lima Festivo, D. Rodriguez (Instituto Oswaldo Cruz, Brazil); LF dos Santos, C. Camargo (Instituto Adolfo Lutz, Brazil); H. Bolaños, F. Duarte (INCIENSA, Costa Rica); S. Ureña (COOPESALUD, Costa Rica); V. Soto (SENASA, Costa Rica); N. Weiler Gustafson, V. Orrego (INS, Paraguay); ML. Zamudio (INS, Perú); F. Schelotto, G. Varela (Instituto de Higiene, Uruguay).


  1. Agger M, Scheutz F, Villumsen S et al (2015) Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection: a systematic review and a proposal. J Antimicrob Chemother 70:2440–2446CrossRefPubMedGoogle Scholar
  2. Amaral MM, Sacerdoti F, Jancic C et al (2013) Action of Shiga toxin type-2 and subtilase cytotoxin on human microvascular endothelial cells. PLoS One 8(7), e70431CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ardissino G, Possenti I, Tel F et al (2014) Time to change the definition of hemolytic uremic syndrome. Eur J Intern Med 25(2), e29CrossRefPubMedGoogle Scholar
  4. Askar M, Faber MS, Frank C et al (2011) Update on the ongoing outbreak of haemolytic uraemic syndrome due to Shiga toxin-producing Escherichia coli (STEC) serotype O104, Germany, May 2011. Euro Surveill 16(22). pii: 19883.
  5. Basu D, Tumer NE (2015) Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins 7:1467–1485CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bauwens A, Bielaszewska M, Kemper B et al (2011) Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb Haemost 105:515–528CrossRefPubMedGoogle Scholar
  7. Bentancor LV, Bilen MF, Mejías MP et al (2013) Functional capacity of Shiga-toxin promoter sequences in eukaryotic cells. PLoS One 8(2), e57128CrossRefPubMedPubMedCentralGoogle Scholar
  8. Besser T, Schmidt C, Shah D et al (2014) “Preharvest” food safety for Escherichia coli O157 and other pathogenic Shiga toxin-producing strains. Microbiol Spectr 2(5):EHEC-0021-2013Google Scholar
  9. Beutin L, Martin A (2012) Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J Food Prot 75:408–418CrossRefPubMedGoogle Scholar
  10. Beutin L, Montenegro MA, Ørskov I et al (1989) Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J Clin Microbiol 27:2559–2564PubMedPubMedCentralGoogle Scholar
  11. Bielaszewska M, Sinha B, Kuczius T et al (2005) Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation and death of human endothelial cells. Infect Immun 73:552–562CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bielaszewska M, Mellmann A, Zhang W et al (2011) Characterization of the E. coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676CrossRefPubMedGoogle Scholar
  13. Bielaszewska M, Mellmann A, Bletz S et al (2013) Enterohemorrhagic Escherichia coli O26:H11/H_: a new virulent clone emerges in Europe. Clin Infect Dis 56:1373–1381CrossRefPubMedGoogle Scholar
  14. Bletz S, Bielaszewska M, Leopold SR et al (2013) Evolution of enterohemorrhagic Escherichia coli O26 based on single-nucleotide polymorphisms. Genome Biol Evol 5:1807–1816CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brandt SM, King N, Cornelius AJ et al (2011) Molecular risk assessment and epidemiological typing of Shiga toxin-producing Escherichia coli by using a novel PCR binary typing system. Appl Environ Microbiol 77:2458–2470CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brooks JT, Sowers EG, Wells JG et al (2005) Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192:1422–1429CrossRefPubMedGoogle Scholar
  17. Brzuszkiewicz E, Thürmer A, Schuldes J et al (2011) Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: entero-aggregative-haemorrhagic Escherichia coli (EAHEC). Arch Microbiol 193:883–891CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bugarel M, Beutin L, Fach P (2010) Low-density macroarray targeting non-locus of enterocyte effacement effectors (nle genes) and major virulence factors of Shiga toxin-producing Escherichia coli (STEC): a new approach for molecular risk assessment of STEC isolates. Appl Environ Microbiol 76:203–211CrossRefPubMedGoogle Scholar
  19. Carbonari C, Miliwebsky E, Deza N et al (2015) Novel EAEC/STEC hybrid O59:NM[H19] strains isolated from human infections in Argentina. In: Abstracts of the ninth triennial international symposium on Shiga toxin-producing Escherichia coli infections, Boston, 13–16 Sept 2015Google Scholar
  20. Centers for Disease Control and Prevention. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet (2013) annual report. Accessed 22 Feb 2016
  21. Cherla RP, Lee SY, Tesh VL (2003) Shiga toxins and apoptosis. FEMS Micobiol Lett 228:159–166CrossRefGoogle Scholar
  22. Chinen I, Carbonari C, Campos J et al (2015) Implementation of whole genome sequencing based STEC surveillance in Argentina. In: Abstracts of the ninth triennial international symposium on Shiga toxin-producing Escherichia coli infections, Boston, 13–16 Sept 2015Google Scholar
  23. Coombes BK, Wickham ME, Mascarenhas M et al (2008) Molecular analysis as an aid to assess the public health risk of non-O157 Shiga toxin-producing Escherichia coli strains. Appl Environ Microbiol 74:2153–2160CrossRefPubMedPubMedCentralGoogle Scholar
  24. Crim SM, Griffin PM, Tauxe R et al (2015) Preliminary incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2006-2014. MMWR Morb Mortal Wkly Rep 64:495–499PubMedGoogle Scholar
  25. Dallman T, Smith GP, O’Brien B et al (2012) Characterization of a Verocytotoxin-producing enteroaggregative Escherichia coli serogroup O111:H21 strain associated with a household outbreak in Northern Ireland. J Clin Microbiol 50:4116–4119CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dallman TJ, Byrne L, Ashton PM et al (2015) Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin Infect Dis 61(3):305–312CrossRefPubMedPubMedCentralGoogle Scholar
  27. de Boer RF, Ferdous M, Ott A et al (2015) Assessing the public health risk of Shiga toxin producing Escherichia coli by use of a rapid diagnostic screening algorithm. J Clin Microbiol 53:1588–1598CrossRefPubMedPubMedCentralGoogle Scholar
  28. de Souza RL, Carvalhaes JTA, Nishimura LS et al (2011) Hemolytic uremic syndrome in pediatric intensive care units in São Paulo, Brazil. Open Microbiol J 5:76–82CrossRefPubMedPubMedCentralGoogle Scholar
  29. Delannoy S, Mariani-Kurkdjian P, Bonacorsi S et al (2015) Characteristics of emerging human-pathogenic Escherichia coli O26:H11 strains isolated in France between 2010 and 2013 and carrying the stx 2d gene only. J Clin Microbiol 53:486–492CrossRefPubMedGoogle Scholar
  30. Duffy G, McCabe E (2014) Veterinary public health approach to managing pathogenic verocytotoxigenic Escherichia coli in the agri-food chain. Microbiol Spectr 2(5):EHEC-0023-2013Google Scholar
  31. EFSA Panel on Biological Hazards (BIOHAZ) (2013) Scientific opinion on VTEC-seropathotype and scientific criteria regarding pathogenicity assessment. EFSA J 11(4):3138. Accessed 22 Feb 2016
  32. Eppinger M, Mammel MK, Leclerc JE et al (2011) Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A 108(50):20142–20147CrossRefPubMedPubMedCentralGoogle Scholar
  33. European Centre for Disease Prevention and Control (2015) Annual epidemiological report. Food- and waterborne diseases and zoonoses 2014. Shiga toxin/verocytotoxin-producing Escherichia coli (STEC/VTEC) infection. Accessed 22 Feb 2016
  34. European Centre for Disease Prevention and Control (2015) Expert opinion on the introduction of next-generation typing methods for food- and waterborne diseases in the EU and EEA. Accessed 31 March 2016
  35. Feng PCH, Delannoy S, Lacher DW et al (2014) Genetic diversity and virulence potential of Shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources. Appl Environ Microbiol 80(15):4757–4763CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ferdous M, Zhou K, de Boer RF et al (2015) Comprehensive characterization of Escherichia coli O104:H4 isolated from patients in the Netherlands. Front Microbiol 6:1348CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ford L, Miller M, Cawthorne A et al (2015) Approaches to the surveillance of foodborne disease: a review of the evidence. Foodborne Pathog Dis 12:927–936CrossRefPubMedGoogle Scholar
  38. Franz E, van Hoek AHAM, van der Wal FJ et al (2012) Genetic features differentiating bovine, food, and human isolates of Shiga toxin-producing Escherichia coli O157 in The Netherlands. J Clin Microbiol 50:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gadea MP, Deza N, Mota M et al (2012) Two cases of urinary tract infection caused by Shiga toxin-producing Escherichia coli O157:H7 strains. Rev Argent Microbiol 44:94–96Google Scholar
  40. Gaulin C, Currie A, Gravel G et al (2014) Summary of 11 years of enteric outbreak investigations and criteria to initiate an investigation, Province of Quebec, 2002 through 2012. J Food Prot 77(9):1563–1570CrossRefPubMedGoogle Scholar
  41. Gómez SA, Abrey-Recalde MJ, Panek CA et al (2013) The oxidative stress induced in vivo by Shiga toxin-2 contributes to the pathogenicity of haemolytic uraemic syndrome. Clin Exp Immunol 173(3):463–472CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gould LH, Mody RK, Ong KL et al (2013) Increased recognition of non-O157 Shiga toxin–producing Escherichia coli infections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog Dis 10:453–460CrossRefPubMedGoogle Scholar
  43. Guth BEC, Picheth CF, Gomes TAT (2010) Escherichia coli situation in Brazil. In: Torres AG (ed) Pathogenic Escherichia coli in Latin America. Betham Science, Sharjah, pp 162–178Google Scholar
  44. Havelaar AH, Braunig J, Christiansen K et al (2007) Towards an integrated approach in supporting microbiological food safety decisions. Zoonoses Public Health 54(3–4):103–117CrossRefPubMedGoogle Scholar
  45. Hirai S, Yokoyama E, Etoh Y (2014) Analysis of the population genetics of clades of enterohaemorrhagic Escherichia coli O157:H7/H- isolated in three areas in Japan. J Appl Microbiol 117:1191–1197CrossRefPubMedGoogle Scholar
  46. Ison SA, Delannoy S, Bugarel M et al (2016) Targeted amplicon sequencing for single-nucleotide-polymorphism genotyping of attaching and effacing Escherichia coli O26:H11 cattle strains via a high-throughput library preparation technique. Appl Environ Microbiol 82:640–649CrossRefPubMedCentralGoogle Scholar
  47. Iyoda S, Tamura K, Itoh K et al (2000) Inducible stx 2 phages are lysogenized in the enteroaggregative and other phenotypic Escherichia coli O86:HNM isolated from patients. FEMS Microbiol Lett 191:7–10CrossRefPubMedGoogle Scholar
  48. Jandhyala DM, Thorpe CM, Magun B (2012) Ricin and Shiga toxins: effects on host cell signal transduction. Curr Top Microbiol Immunol 357:41–65PubMedGoogle Scholar
  49. Jenkins C, Dallman TJ, Launders N et al (2015) Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl Environ Microbiol 81:3946–3952CrossRefPubMedPubMedCentralGoogle Scholar
  50. Joensen KG, Scheutz F, Lund O et al (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kaper JB, O’Brien AD (2014) Overview and historical perspectives. Microbiol Spectr 2(2):EHEC-0028-2014Google Scholar
  52. Karch H, Tarr PI, Bielaszewska M (2005) Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 295:405–418CrossRefPubMedGoogle Scholar
  53. Karmali MA, Mascarenhas M, Shen S et al (2003) Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41:4930–4940CrossRefPubMedPubMedCentralGoogle Scholar
  54. Keen EC (2012) Paradigms of pathogenesis: targeting the mobile genetic elements of disease. Front Cell Infect Microbiol 2:161CrossRefPubMedPubMedCentralGoogle Scholar
  55. Krüger A, Lucchesi PMA (2015) Shiga toxins and stx phages: highly diverse entities. Microbiology 161:451–462CrossRefPubMedGoogle Scholar
  56. Kulasekara BR, Jacobs M, Zhou Y et al (2009) Analysis of the genome of the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect Immun 77:3713–3721CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lascowski KMS, Guth BEC, Martins FH et al (2013) Shiga toxin-producing Escherichia coli in drinking water supplies of north Paraná State, Brazil. J Appl Microbiol 114(4):1230–1239CrossRefPubMedGoogle Scholar
  58. Launders N, Byrne L, Adams N et al (2013) Outbreak of Shiga toxin-producing E. coli O157 associated with consumption of watercress, United Kingdom, August to September 2013. Euro Surveill 18(44). pii: 20624Google Scholar
  59. Lee MS, Kim MH, Tesh VL (2013) Shiga toxins expressed by human pathogenic bacteria induce immune responses in host cells. J Microbiol 51:724–730CrossRefPubMedGoogle Scholar
  60. Luna-Gierke RE, Griffin PM, Gould LH et al (2014) Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiol Infect 142:2270–2280CrossRefPubMedGoogle Scholar
  61. Manning SD, Motiwala AS, Springman C et al (2008) Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci U S A 105:4868–4873CrossRefPubMedPubMedCentralGoogle Scholar
  62. Matheus-Guimarães C, Gonçalves EM, Guth BEC (2014) Interactions of O157 and non-O157 Shiga toxin–producing Escherichia coli (STEC) recovered from bovine hide and carcass with human cells and abiotic surfaces. Foodborne Pathog Dis 11(3):248–255CrossRefPubMedGoogle Scholar
  63. McGannon CM, Fuller CA, Weiss AA (2010) Different classes of antibiotics differentially influence Shiga toxin production. Antimicrob Agents Chemother 54:3790–3798CrossRefPubMedPubMedCentralGoogle Scholar
  64. McWilliams BD, Torres AG (2014) Enterohemorrhagic Escherichia coli adhesins. Microbiol Spectr 2(3):EHEC-0003-2013Google Scholar
  65. Mejias MP, Cabrera G, Jimena Fernández-Brando R et al (2014) Protection of mice against Shiga toxin 2 (Stx2)-associated damage by maternal immunization with a Brucella Lumazine Synthase-Stx2 B subunit chimera. Infect Immun 82(4):1491–1499CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mele C, Remuzzi G, Noris M (2014) Hemolytic uremic syndrome. Semin Immunopathol 36:399–420CrossRefPubMedGoogle Scholar
  67. Melli LJ, Ciocchini AE, Caillava AJ et al (2015) Serogroup-specific bacterial engineered glycoproteins as novel antigenic targets for diagnosis of Shiga toxin-producing-Escherichia coli-associated hemolytic-uremic syndrome. J Clin Microbiol 53:528–538CrossRefPubMedGoogle Scholar
  68. Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6(7), e22751CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mellor GE, Sim EM, Barlow RS et al (2012) Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. Appl Environ Microbiol 78:4724–4731CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mellor GE, Fegan N, Gobius KS et al (2015) Geographically distinct Escherichia coli O157 differ by lineage, Shiga toxin genotype and total Shiga toxin production. J Clin Microbiol 53:579–586CrossRefPubMedGoogle Scholar
  71. Melton-Celsa AR (2014) Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr 2(3):EHEC-0024-2013Google Scholar
  72. Melton-Celsa AR, O’Brien AD (2014) New therapeutic developments against Shiga toxin-producing Escherichia coli. Microbiol Spectr 2(5):EHEC-0013-2013Google Scholar
  73. Miko A, Rivas M, Bentancor A et al (2014) Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer and humans from Argentina and Germany. Front Cell Infect Microbiol 4:78CrossRefPubMedPubMedCentralGoogle Scholar
  74. Monecke S, Mariani-Kurkdjian P, Bingen E, Weill FX et al (2011) Presence of enterohemorrhagic Escherichia coli ST678/O104:H4 in France prior to 2011. Appl Environ Microbiol 77:8784–8786CrossRefPubMedPubMedCentralGoogle Scholar
  75. Morabito S, Karch H, Mariani-Kurkdjian P et al (1998) Enteroaggregative, Shiga toxin-producing Escherichia coli O111:H2 associated with an outbreak of hemolytic-uremic syndrome. J Clin Microbiol 36:840–842PubMedPubMedCentralGoogle Scholar
  76. Moxley RA, Acuff GR (2014) Peri- and postharvest factors in the control of Shiga toxin-producing Escherichia coli in beef. Microbiol Spectr 2(6):EHEC-0017-2013Google Scholar
  77. Neupane M, Abu-Ali GS, Mitra A et al (2011) Shiga toxin 2 overexpression in Escherichia coli O157:H7 strains associated with severe human disease. Microb Pathog 51:466–470CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nyholm O, Halkilahti J, Wiklund G et al (2015) Comparative genomics and characterization of hybrid shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) strains. PLoS One 10(8), e0135936CrossRefPubMedPubMedCentralGoogle Scholar
  79. Paton AW, Paton JC (2010) Escherichia coli subtilase cytotoxin. Toxins 2:215–228CrossRefPubMedPubMedCentralGoogle Scholar
  80. Paton AW, Woodrow MC, Doyle R et al (1999) Molecular characterization of a Shiga-toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J Clin Microbiol 37:3357–3361PubMedPubMedCentralGoogle Scholar
  81. Persad AK, LeJeune JT (2014) Animal reservoirs of Shiga toxin-producing Escherichia coli. Microbiol Spectr 2(4):EHEC-0027-2014Google Scholar
  82. Pianciola L, Chinen I, Mazzeo M et al (2014) Genotypic characterization of Escherichia coli O157:H7 strains that cause diarrhea and hemolytic uremic syndrome in Neuquén, Argentina. Int J Med Microbiol 303:499–504Google Scholar
  83. Pianciola L, D’Astek BA, Mazzeo M et al (2016) Genetic features of human and bovine Escherichia coli O157:H7 strains isolated in Argentina. Int J Med Microbiol 306:123–130CrossRefPubMedGoogle Scholar
  84. Prager R, Lang C, Aurass P et al (2014) Two novel EHEC/EAEC hybrid strains isolated from human infections. PLoS One 9(4), e95379CrossRefPubMedPubMedCentralGoogle Scholar
  85. Riley LW, Remis RS, Helgerson SD et al (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685CrossRefPubMedGoogle Scholar
  86. Rivas M, Miliwebsky E, Chinen I et al (2006a) The epidemiology of hemolytic uremic syndrome in Argentina. Diagnosis of the etiologic agent, reservoirs and routes of transmission. Medicina (Buenos Aires) 66:27–32Google Scholar
  87. Rivas M, Miliwebsky E, Chinen I et al (2006b) Characterization and epidemiologic subtyping of Shiga toxin-producing Escherichia coli strains isolated from hemolytic uremic syndrome and diarrhea cases in Argentina. Foodborne Pathog Dis 3:88–96CrossRefPubMedGoogle Scholar
  88. Rivas M, Chinen I, Miliwebsky E et al (2014) Risk factors for Shiga toxin-producing Escherichia coli-associated human diseases. Microbiol Spectr (5):EHEC-0002-2013Google Scholar
  89. Sandvig K, Bergan J, Kavaliauskiene S et al (2014) Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 54:1–13CrossRefPubMedGoogle Scholar
  90. Scheutz F (2014) Taxonomy meets public health: the case of Shiga toxin-producing Escherichia coli. Microbiol Spectr 2(4):EHEC-0019-2013Google Scholar
  91. Scheutz F, Teel LD, Beutin L et al (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951–2963CrossRefPubMedPubMedCentralGoogle Scholar
  92. Schüller S (2011) Shiga toxin interaction with human intestinal epithelium. Toxins 3(6):626–639CrossRefPubMedPubMedCentralGoogle Scholar
  93. Siegler RL, Obrig TG, Pysher TJ et al (2003) Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr Nephrol 18:92–96PubMedGoogle Scholar
  94. Smith DR (2014) Vaccination of cattle against Escherichia coli O157:H7. Microbiol Spectr 2(6):EHEC-0006-2013. doi: 10.1128/microbiolspec.EHEC-0006-2013
  95. Spinale JM, Ruebner RL, Copelovitch L et al (2013) Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr Nephrol 28:2097–2105CrossRefPubMedGoogle Scholar
  96. Stearns-Kurosawa DJ, Collins V, Freeman S et al (2010) Distinct physiologic and inflammatory responses elicited in baboons after challenge with Shiga toxin type 1 or 2 from enterohemorrhagic Escherichia coli. Infect Immun 78(6):2497–2504CrossRefPubMedPubMedCentralGoogle Scholar
  97. Stearns-Kurosawa DJ, Oh SY, Cherla RP et al (2013) Distinct renal pathology and a chemotactic phenotype after enterohemorrhagic Escherichia coli Shiga toxins in non-human primate models of hemolytic uremic syndrome. Am J Pathol 182(4):1227–1238CrossRefPubMedPubMedCentralGoogle Scholar
  98. Szu SC, Ahmed A (2014) Clinical studies of Escherichia coli O157:H7 conjugate vaccines in adults and young children. Microbiol Spectr 2(6):EHEC-0016-2013Google Scholar
  99. Tanaro JD, Piaggio MC, Galli L et al (2014) Prevalence of Escherichia coli O157:H7 in surface water near cattle feedlots. Foodborne Pathog Dis 9(11):960–965CrossRefGoogle Scholar
  100. Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365:1073–1086PubMedGoogle Scholar
  101. Terajima J, Iyoda S, Ohnishi M et al (2014) Shiga toxin (verotoxin)-producing Escherichia coli in Japan. Microbiol Spectr 2(5):EHEC-0011-2013Google Scholar
  102. Tozzoli R, Ardissino G, Torresani E et al (2015) Characterization of an enteroaggregative-Shiga toxin producing Escherichia coli O127:H4 strain from an outbreak in a primary school in Northern Italy. In: Abstracts of the ninth triennial international symposium on Shiga toxin-producing Escherichia coli infections, Boston, 13–16 Sept 2015Google Scholar
  103. Vally H, Hall G, Dyda A et al (2012) Epidemiology of Shiga toxin producing Escherichia coli in Australia, 2000–2010. BMC Public Health 12:63CrossRefPubMedPubMedCentralGoogle Scholar
  104. Varela G, Schelotto F (2015) Síndrome urémico hemolítico en Uruguay. Aspectos microbiológicos y clínicos, aportes para su conocimiento regional. Rev Fac Cienc Salud UDES 2:25–30. doi: 10.20320/rfcsudes-201521-416Google Scholar
  105. Whitney BM, Mainero C, Humes E et al (2015) Socioeconomic status and foodborne pathogens in Connecticut, USA, 2000-2011. Emerg Infect Dis 21:1617–1624CrossRefPubMedPubMedCentralGoogle Scholar
  106. Whitworth J, Zhang Y, Bono J et al (2010) Diverse genetic markers concordantly identified bovine origin Escherichia coli O157 genotypes underrepresented in human disease. Appl Environ Microbiol 76:361–365CrossRefPubMedGoogle Scholar
  107. Wick LM, Qi W, Lacher DW et al (2005) Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol 187:1783–1791CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wickham ME, Lupp C, Mascarenhas M et al (2006) Bacterial genetic determinants of non-O157 STEC outbreaks and hemolytic-uremic syndrome after infection. J Infect Dis 194:819–827CrossRefPubMedGoogle Scholar
  109. Yang Z, Kovar J, Kim Jet AL (2004) Identification of common subpopulations of non-sorbitol-fermenting, β-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ Microbiol 70:6846–6854CrossRefPubMedPubMedCentralGoogle Scholar
  110. Zoja C, Buelli S, Morigi M (2010) Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol 25(11):2231–2240CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marta Rivas
    • 1
    Email author
  • Isabel Chinen
    • 1
  • Beatriz E. C. Guth
    • 2
  1. 1.Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas—ANLIS “Dr. Carlos G. Malbrán”Buenos AiresArgentina
  2. 2.Department of Microbiology, Immunology, and ParasitologyUniversidade Federal de São PauloSão PauloBrazil

Personalised recommendations