Interactions of Pathogenic Escherichia coli with Host Receptors

  • Mauricio J. FarfánEmail author
  • Jorge A. Girón


Each Escherichia coli pathotype has a unique way to interact with its host. While some of the adhesins that mediate cell adherence and bacteria-to-bacteria interactions are shared among these different categories of pathogenic E. coli, other adhesins are pathotype specific. This implies that there are common and unique receptors recognized by this myriad of E. coli adhesins, which ultimately determine what host (human, animal, or plant), tissue, or cell type they are colonizing. Notably, both commensal and pathogenic E. coli adhere to the gut mucus layer covering and protecting epithelial cells. This is a prerequisite for colonization of the epithelium and establishment of disease. It is then the interaction between surface adhesins and their cognate surface-exposed receptors that determines tropism, unravels mechanisms of pathogenesis, and triggers activation of the local immune responses. Despite our knowledge on the mechanisms of adherence of some pathogenic E. coli, much effort is still needed in identifying the eukaryotic receptor counterparts. The most current knowledge on the nature of the receptors involved in the E. coli–host interaction is reviewed here.


E. coli Bacterial receptors Bacteria–host interaction Adhesins Fimbriae 



This work was supported by grants 1120809 and 1160426 from FONDECYT to M.J.F.


  1. Abraham SN, Beachey EH, Simpson WA (1983) Adherence of Streptococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa to fibronectin-coated and uncoated epithelial cells. Infect Immun 41:1261–1268PubMedPubMedCentralGoogle Scholar
  2. Alteri CJ, Mobley HL (2007) Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75:2679–2688CrossRefPubMedPubMedCentralGoogle Scholar
  3. Avelino F, Saldana Z, Islam S, Monteiro-Neto V, Dall’Agnol M, Eslava CA, Giron JA (2010) The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells. Int J Med Microbiol 300:440–448CrossRefPubMedGoogle Scholar
  4. Ayala-Lujan JL, Vijayakumar V, Gong M, Smith R, Santiago AE, Ruiz-Perez F (2014) Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes. PLoS One 9, e107920CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barnich N, Carvalho FA, Glasser AL et al (2007) CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 117:1566–1574CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berger CN, Billker O, Meyer TF, Servin AL, Kansau I (2004) Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol 52:963–983CrossRefPubMedGoogle Scholar
  7. Berger SB, Romero X, Ma C et al (2010) SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11:920–927CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berry AA, Yang Y, Pakharukova N et al (2014) Structural insight into host recognition by aggregative adherence fimbriae of enteroaggregative Escherichia coli. PLoS Pathog 10, e1004404CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carvalho FA, Barnich N, Sivignon A, Darcha C, Chan CH, Stanners CP, Darfeuille-Michaud A (2009) Crohn’s disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med 206:2179–2189CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castaneda-Roldan EI, Avelino-Flores F, Dall’Agnol M, Freer E, Cedillo L, Dornand J, Giron JA (2004) Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol 6:435–445CrossRefPubMedGoogle Scholar
  11. Christner M, Franke GC, Schommer NN et al (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207CrossRefPubMedGoogle Scholar
  12. Coddens A, Valis E, Benktander J, Angstrom J, Breimer ME, Cox E, Teneberg S (2011) Erythrocyte and porcine intestinal glycosphingolipids recognized by F4 fimbriae of enterotoxigenic Escherichia coli. PLoS One 6, e23309CrossRefPubMedPubMedCentralGoogle Scholar
  13. Day CJ, Tran EN, Semchenko EA et al (2015) Glycan:glycan interactions: high affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc Natl Acad Sci U S A 112:E7266–E7275CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dreux N, Denizot J, Martinez-Medina M et al (2013) Point mutations in FimH adhesin of Crohn’s disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathog 9, e1003141CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duan R, Chen X, Wang F, Zhang T, Ling P (2013) Oral administration of heparin or heparosan increases the Lactobacillus population in gut microbiota of rats. Carbohydr Polym 94:100–105CrossRefPubMedGoogle Scholar
  16. Dubreuil JD, Giudice GD, Rappuoli R (2002) Helicobacter pylori interactions with host serum and extracellular matrix proteins: potential role in the infectious process. Microbiol Mol Biol Rev 66:617–629CrossRefPubMedPubMedCentralGoogle Scholar
  17. Erdem AL, Avelino F, Xicohtencatl-Cortes J, Giron JA (2007) Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 189:7426–7435CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eto DS, Jones TA, Sundsbak JL, Mulvey MA (2007) Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 3, e100CrossRefPubMedPubMedCentralGoogle Scholar
  19. Etzold S, Juge N (2014) Structural insights into bacterial recognition of intestinal mucins. Curr Opin Struct Biol 28:23–31CrossRefPubMedGoogle Scholar
  20. Farfan MJ, Torres AG (2012) Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 80:903–913CrossRefPubMedPubMedCentralGoogle Scholar
  21. Farfan MJ, Inman KG, Nataro JP (2008) The major pilin subunit of the AAF/II fimbriae from enteroaggregative Escherichia coli mediates binding to extracellular matrix proteins. Infect Immun 76:4378–4384CrossRefPubMedPubMedCentralGoogle Scholar
  22. Farfan MJ, Cantero L, Vidal R, Botkin DJ, Torres AG (2011) Long polar fimbriae of enterohemorrhagic Escherichia coli O157:H7 bind to extracellular matrix proteins. Infect Immun 79:3744–3750CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frendeus B, Wachtler C, Hedlund M, Fischer H, Samuelsson P, Svensson M, Svanborg C (2001) Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol Microbiol 40:37–51CrossRefPubMedGoogle Scholar
  24. Froman G, Switalski LM, Faris A, Wadstrom T, Hook M (1984) Binding of Escherichia coli to fibronectin. A mechanism of tissue adherence. J Biol Chem 259:14899–14905PubMedGoogle Scholar
  25. Galli L, Torres AG, Rivas M (2010) Identification of the long polar fimbriae gene variants in the locus of enterocyte effacement-negative Shiga toxin-producing Escherichia coli strains isolated from humans and cattle in Argentina. FEMS Microbiol Lett 308:123–129PubMedPubMedCentralGoogle Scholar
  26. Garcia JR, Gerardo NM (2014) The symbiont side of symbiosis: do microbes really benefit? Front Microbiol 5:510CrossRefPubMedPubMedCentralGoogle Scholar
  27. Garnett JA, Martinez-Santos VI, Saldana Z et al (2012) Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus. Proc Natl Acad Sci U S A 109:3950–3955CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ghosal A, Bhowmick R, Banerjee R et al (2009) Characterization and studies of the cellular interaction of native colonization factor CS6 purified from a clinical isolate of enterotoxigenic Escherichia coli. Infect Immun 77:2125–2135CrossRefPubMedPubMedCentralGoogle Scholar
  29. Giron JA, Ho AS, Schoolnik GK (1991) An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254:710–713CrossRefPubMedGoogle Scholar
  30. Giron JA, Ho AS, Schoolnik GK (1993) Characterization of fimbriae produced by enteropathogenic Escherichia coli. J Bacteriol 175:7391–7403PubMedPubMedCentralGoogle Scholar
  31. Giron JA, Torres AG, Freer E, Kaper JB (2002) The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379CrossRefPubMedGoogle Scholar
  32. Grys TE, Walters LL, Welch RA (2006) Characterization of the StcE protease activity of Escherichia coli O157:H7. J Bacteriol 188:4646–4653CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guignot J, Peiffer I, Bernet-Camard MF, Lublin DM, Carnoy C, Moseley SL, Servin AL (2000) Recruitment of CD55 and CD66e brush border-associated glycosylphosphatidylinositol-anchored proteins by members of the Afa/Dr diffusely adhering family of Escherichia coli that infect the human polarized intestinal Caco-2/TC7 cells. Infect Immun 68:3554–3563CrossRefPubMedPubMedCentralGoogle Scholar
  34. Harrington SM, Sheikh J, Henderson IR, Ruiz-Perez F, Cohen PS, Nataro JP (2009) The Pic protease of enteroaggregative Escherichia coli promotes intestinal colonization and growth in the presence of mucin. Infect Immun 77:2465–2473CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hauck CR, Ohlsen K (2006) Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 9:5–11CrossRefPubMedGoogle Scholar
  36. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP (1999) Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 67:5587–5596PubMedPubMedCentralGoogle Scholar
  37. Hyland RM, Sun J, Griener TP, Mulvey GL, Klassen JS, Donnenberg MS, Armstrong GD (2008) The bundlin pilin protein of enteropathogenic Escherichia coli is an N-acetyllactosamine-specific lectin. Cell Microbiol 10:177–187PubMedGoogle Scholar
  38. Izquierdo M, Alvestegui A, Nataro JP, Ruiz-Perez F, Farfan MJ (2014a) Participation of integrin alpha5beta1 in the fibronectin-mediated adherence of enteroaggregative Escherichia coli to intestinal cells. Biomed Res Int 2014:781246CrossRefPubMedPubMedCentralGoogle Scholar
  39. Izquierdo M, Navarro-Garcia F, Nava-Acosta R, Nataro JP, Ruiz-Perez F, Farfan MJ (2014b) Identification of cell surface-exposed proteins involved in the fimbria-mediated adherence of enteroaggregative Escherichia coli to intestinal cells. Infect Immun 82:1719–1724CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jansson L, Tobias J, Jarefjall C, Lebens M, Svennerholm AM, Teneberg S (2009) Sulfatide recognition by colonization factor antigen CS6 from enterotoxigenic Escherichia coli. PLoS One 4, e4487CrossRefPubMedPubMedCentralGoogle Scholar
  41. Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39CrossRefPubMedGoogle Scholar
  42. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140CrossRefPubMedGoogle Scholar
  43. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520CrossRefPubMedGoogle Scholar
  44. Konar M, Sachin O, Priya A, Ghosh S (2012) Identification of key proteins of cultured human intestinal cells involved in interaction with enteroaggregative Escherichia coli. FEMS Immunol Med Microbiol 66:177–190CrossRefPubMedGoogle Scholar
  45. Kostakioti M, Stathopoulos C (2004) Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun 72:5548–5554CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kukkonen M, Raunio T, Virkola R et al (1993) Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol 7:229–237CrossRefPubMedGoogle Scholar
  47. Kumar GA, Jafurulla M, Chattopadhyay A (2016) The membrane as the gatekeeper of infection: cholesterol in host-pathogen interaction. Chem Phys Lipids. doi: 10.1016/j.chemphyslip.2016.02.007 Google Scholar
  48. Lindberg F, Lund B, Johansson L, Normark S (1987) Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature 328:84–87CrossRefPubMedGoogle Scholar
  49. Lonardi E, Moonens K, Buts L et al (2013) Structural sampling of glycan interaction profiles reveals mucosal receptors for fimbrial adhesins of enterotoxigenic Escherichia coli. Biology 2:894–917CrossRefPubMedPubMedCentralGoogle Scholar
  50. Luo Q, Kumar P, Vickers TJ et al (2014) Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infect Immun 82:509–521CrossRefPubMedPubMedCentralGoogle Scholar
  51. Madhavan TP, Sakellaris H (2015) Colonization factors of enterotoxigenic Escherichia coli. Adv Appl Microbiol 90:155–197CrossRefPubMedGoogle Scholar
  52. Madhavan TP, Riches JD, Scanlon MJ, Ulett GC, Sakellaris H (2016) Binding of CFA/I Pili of enterotoxigenic Escherichia coli to asialo-GM1 is mediated by the minor pilin, CfaE. Infect Immun 84:1642–1649CrossRefPubMedGoogle Scholar
  53. Magalhaes CA, Rossato SS, Barbosa AS, Santos TO, Elias WP, Sircili MP, Piazza RM (2011) The ability of haemolysins expressed by atypical enteropathogenic Escherichia coli to bind to extracellular matrix components. Mem Inst Oswaldo Cruz 106:146–152CrossRefPubMedGoogle Scholar
  54. Masana MO, Leotta GA, Del Castillo LL et al (2010) Prevalence, characterization, and genotypic analysis of Escherichia coli O157:H7/NM from selected beef exporting abattoirs of Argentina. J Food Prot 73:649–656CrossRefPubMedGoogle Scholar
  55. McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278CrossRefPubMedGoogle Scholar
  56. Mian MF, Lauzon NM, Andrews DW, Lichty BD, Ashkar AA (2010) FimH can directly activate human and murine natural killer cells via TLR4. Mol Ther 18:1379–1388CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moraes CT, Polatto JM, Rossato SS et al (2015) Flagellin and GroEL mediates in vitro binding of an atypical enteropathogenic Escherichia coli to cellular fibronectin. BMC Microbiol 15:278CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mouricout M, Milhavet M, Durie C, Grange P (1995) Characterization of glycoprotein glycan receptors for Escherichia coli F17 fimbrial lectin. Microb Pathog 18:297–306CrossRefPubMedGoogle Scholar
  59. Nallapareddy SR, Singh KV, Sillanpaa J, Zhao M, Murray BE (2011) Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 79:2901–2910CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201PubMedPubMedCentralGoogle Scholar
  61. Nataro JP, Deng Y, Maneval DR, German AL, Martin WC, Levine MM (1992) Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect Immun 60:2297–2304PubMedPubMedCentralGoogle Scholar
  62. Nava-Acosta R, Navarro-Garcia F (2013) Cytokeratin 8 is an epithelial cell receptor for Pet, a cytotoxic serine protease autotransporter of Enterobacteriaceae. MBio 4:e00838-00813CrossRefGoogle Scholar
  63. Obata F, Tohyama K, Bonev AD et al (2008) Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J Infect Dis 198:1398–1406CrossRefPubMedPubMedCentralGoogle Scholar
  64. Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655CrossRefPubMedGoogle Scholar
  65. Patti JM, Hook M (1994) Microbial adhesins recognizing extracellular matrix macromolecules. Curr Opin Cell Biol 6:752–758CrossRefPubMedGoogle Scholar
  66. Perna NT, Plunkett G 3rd, Burland V et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533CrossRefPubMedGoogle Scholar
  67. Pouttu R, Westerlund-Wikstrom B, Lang H et al (2001) matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol 183:4727–4736CrossRefPubMedPubMedCentralGoogle Scholar
  68. Qadri F, Svennerholm AM, Faruque AS, Sack RB (2005) Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18:465–483CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rendon MA, Saldana Z, Erdem AL et al (2007) Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 104:10637–10642CrossRefPubMedPubMedCentralGoogle Scholar
  70. Resta-Lenert S, Das S, Batra SK, Ho SB (2011) Muc17 protects intestinal epithelial cells from enteroinvasive E. coli infection by promoting epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 300:G1144–G1155CrossRefPubMedPubMedCentralGoogle Scholar
  71. Roberts JA, Kaack MB, Baskin G, Marklund BI, Normark S (1997) Epitopes of the P-fimbrial adhesin of E. coli cause different urinary tract infections. J Urol 158:1610–1613CrossRefPubMedGoogle Scholar
  72. Rossez Y, Holmes A, Lodberg-Pedersen H et al (2014) Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants. J Biol Chem 289:34349–34365CrossRefPubMedPubMedCentralGoogle Scholar
  73. Saldana Z, Sanchez E, Xicohtencatl-Cortes J, Puente JL, Giron JA (2011) Surface structures involved in plant stomata and leaf colonization by shiga-toxigenic Escherichia coli O157:H7. Front Microbiol 2:119CrossRefPubMedPubMedCentralGoogle Scholar
  74. Saldana Z, De la Cruz MA, Carrillo-Casas EM et al (2014) Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium. PLoS One 9:e101200CrossRefPubMedPubMedCentralGoogle Scholar
  75. Samadder P, Xicohtencatl-Cortes J, Saldana Z, Jordan D, Tarr PI, Kaper JB, Giron JA (2009) The Escherichia coli ycbQRST operon encodes fimbriae with laminin-binding and epithelial cell adherence properties in Shiga-toxigenic E. coli O157:H7. Environ Microbiol 11:1815–1826CrossRefPubMedPubMedCentralGoogle Scholar
  76. Saren A, Virkola R, Hacker J, Korhonen TK (1999) The cellular form of human fibronectin as an adhesion target for the S fimbriae of meningitis-associated Escherichia coli. Infect Immun 67:2671–2676PubMedPubMedCentralGoogle Scholar
  77. Servin AL (2014) Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 27:823–869CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shin JS, Gao Z, Abraham SN (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289:785–788CrossRefPubMedGoogle Scholar
  79. Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726CrossRefPubMedGoogle Scholar
  80. Sokurenko EV, Courtney HS, Abraham SN, Klemm P, Hasty DL (1992) Functional heterogeneity of type 1 fimbriae of Escherichia coli. Infect Immun 60:4709–4719PubMedPubMedCentralGoogle Scholar
  81. Sommer F, Backhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238CrossRefPubMedGoogle Scholar
  82. Takeda K, Akira S (2004) Microbial recognition by toll-like receptors. J Dermatol Sci 34:73–82CrossRefPubMedGoogle Scholar
  83. Tchoupa AK, Schuhmacher T, Hauck CR (2014) Signaling by epithelial members of the CEACAM family—mucosal docking sites for pathogenic bacteria. Cell Commun Signal 12:27CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tironi-Farinati C, Loidl CF, Boccoli J, Parma Y, Fernandez-Miyakawa ME, Goldstein J (2010) Intracerebroventricular Shiga toxin 2 increases the expression of its receptor globotriaosylceramide and causes dendritic abnormalities. J Neuroimmunol 222:48–61CrossRefPubMedGoogle Scholar
  85. Torres AG, Blanco M, Valenzuela P et al (2009) Genes related to long polar fimbriae of pathogenic Escherichia coli strains as reliable markers to identify virulent isolates. J Clin Microbiol 47:2442–2451CrossRefPubMedPubMedCentralGoogle Scholar
  86. van Driel BJ, Liao G, Engel P, Terhorst C (2016) Responses to microbial challenges by SLAMF receptors. Front Immunol 7:4PubMedPubMedCentralGoogle Scholar
  87. Waksman G, Hultgren SJ (2009) Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765–774CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wells TJ, McNeilly TN, Totsika M, Mahajan A, Gally DL, Schembri MA (2009) The Escherichia coli O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. Environ Microbiol 11:1803–1814CrossRefPubMedGoogle Scholar
  89. Westerlund B, Van Die I, Hoekstra W, Virkola R, Korhonen TK (1993) P fimbriae of uropathogenic Escherichia coli as multifunctional adherence organelles. Zentralbl Bakteriol 278:229–237CrossRefPubMedGoogle Scholar
  90. Xicohtencatl-Cortes J, Monteiro-Neto V, Saldana Z, Ledesma MA, Puente JL, Giron JA (2009) The type 4 pili of enterohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes. J Bacteriol 191:411–421CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de Pediatría, Facultad de MedicinaUniversidad de Chile, Hospital Dr. Luis Calvo MackennaSantiagoChile
  2. 2.Benemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.University of VirginiaPuebla and CharlottesvilleMexicoUSA

Personalised recommendations