Antibiotic Resistance in Escherichia coli

  • Theresa J. OchoaEmail author
  • Oscar G. Gómez-Duarte


The Latin American region faces a significant challenge with high levels of antimicrobial resistance among important Gram-negative organisms, including E. coli. In recent years, extended-spectrum β-lactamases (ESBLs) have increased in type and frequency, carbapenemases have emerged, and multidrug-resistant E. coli has spread across the American continent. It is also important to recognize the worldwide spread of the E. coli ST131 clones and subclones with fluoroquinolone and ESBL resistance, and in some instances, resistant to carbapemens and aminoglycosides. Resistance in E. coli is generated by positive selection through single point mutations, which is often the case for fluoroquinolone resistance, or by acquisition of mobile genetic elements, which has been the case for broad spectrum penicillins and third-generation cephalosporins. Successful resistance clones may continue to evolve into unique subclones and spread worldwide as observed with ST131 subclones. The frequency of E. coli antimicrobial resistance varies by geographic area and it is not possible to establish universal guidelines on the use of antibiotics. It is critical that every local healthcare institution establishes an antimicrobial stewardship program to promote the proper use of antibiotics, restricting their use, audit clinical use in real-time, and provide feedback to the treating clinician. Implementation of antimicrobial stewardship programs is the best way to optimize clinical outcomes, decrease further antibiotics resistance, and limit healthcare cost associated with management of multidrug-resistant E. coli infections.


Extended-spectrum β-lactamase Carbapenemases Multidrug-resistance E. coli ST131 


  1. Aguilar-Montes de Oca S, Talavera-Rojas M, Soriano-Vargas E, Barba-León J, Vazquez-Navarrete J (2015) Determination of extended spectrum β-lactamases/AmpC β-lactamases and plasmid-mediated quinolone resistance in Escherichia coli isolates obtained from bovine carcasses in Mexico. Trop Anim Health Prod 47:975–981CrossRefPubMedGoogle Scholar
  2. Amézquita-López BA, Quiñones B, Soto-Beltrán M, Lee BG, Yambao JC, Lugo-Melchor OY, Chaidez C (2016) Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and Non-O157 recovered from domestic farm animals in rural communities in Northwestern Mexico. Antimicrob Resist Infect Control 5:1CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amos GCA, Hawkey PM, Gaze WH, Wellington EM (2014) Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J Antimicrob Chemother 69:1785–1791CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armas-Freire PI, Trueba G, Proano-Bolanos C, Levy K, Zhang L, Marrs CF, Cevallos W, Eisenberg JNS (2015) Unexpected distribution of the fluoroquinolone-resistance gene qnrB in Escherichia coli isolates from different human and poultry origins in Ecuador. Int Microbiol 18:85–90PubMedPubMedCentralGoogle Scholar
  5. Banerjee R, Johnson JR (2014) A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother 58:4997–5004CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banerjee R, Robicsek A, Kuskowski MA, Porter S, Johnston BD, Sokurenko E, Tchesnokova V, Price LB, Johnson JR (2013a) Molecular epidemiology of Escherichia coli sequence type 131 and Its H30 and. Antimicrob Agents Chemother 57:6385–6388CrossRefPubMedPubMedCentralGoogle Scholar
  7. Banerjee R, Strahilevitz J, Johnson JR, Nagwekar PP, Schora DM, Shevrin I, Du H, Peterson LR, Robicsek A (2013b) Predictors and molecular epidemiology of community-onset extended-spectrum beta-lactamase-producing Escherichia coli infection in a Midwestern community. Infect Control Hosp Epidemiol 34:947–953CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barbieri NL, de Oliveira AL, Tejkowski TM, Pavanelo DB, Matter LB, Pinheiro SRS, Vaz TMI, Nolan LK, Logue CM, de Brito BG, Horn F (2015) Molecular characterization and clonal relationships among Escherichia coli strains isolated from broiler chickens with colisepticemia. Foodborne Pathog Dis 12:74–83CrossRefPubMedGoogle Scholar
  9. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK (2016) Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis 62:e51–e77CrossRefPubMedGoogle Scholar
  10. Bartoloni A, Pallecchi L, Riccobono E, Mantella A, Magnelli D, Di Maggio T, Villagran AL, Lara Y, Saavedra C, Strohmeyer M, Bartalesi F, Trigoso C, Rossolini GM (2013) Relentless increase of resistance to fluoroquinolones and expanded-spectrum cephalosporins in Escherichia coli: 20 years of surveillance in resource-limited settings from Latin America. Clin Microbiol Infect 19:356–361CrossRefPubMedGoogle Scholar
  11. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW, Stanton-Cook M, Schembri MA, Beatson SA (2016) Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. MBio 7(3):e00347-16CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bertrand X, Dowzicky MJ (2012) Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther 34:124–137CrossRefPubMedGoogle Scholar
  13. Beyer A, Baumann S, Scherz G, Stahl J, von Bergen M, Friese A, Roesler U, Kietzmann M, Honscha W (2015) Effects of ceftiofur treatment on the susceptibility of commensal porcine E. coli—comparison between treated and untreated animals housed in the same stable. BMC Vet Res 11:265CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51CrossRefPubMedGoogle Scholar
  15. Blanco M, Blanco JE, Blanco J, Gonzalez EA, Mora A, Prado C, Fernandez L, Rio M, Ramos J, Alonso MP (1996) Prevalence and characteristics of Escherichia coli serotype O157:H7 and other verotoxin-producing E. coli in healthy cattle. Epidemiol Infect 117:251–257CrossRefPubMedPubMedCentralGoogle Scholar
  16. Buchanan R, Stoesser N, Crook D, Bowler IC. Multidrug-resistant Escherichia coli soft tissue infection investigated with bacterial whole genome sequencing. BMJ Case Rep. 2014 Oct 19; 2014. pii: bcr2014207200. doi: 10.1136/bcr-2014-207200 Google Scholar
  17. Burgess MJ, Johnson JR, Porter SB, Johnston B, Clabots C, Lahr BD, Uhl JR, Banerjee R (2015) Long-term care facilities are reservoirs for antimicrobial-resistant sequence type 131 Escherichia coli. Open Forum Infect Dis 2(1):ofv011CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bush K (2013a) Proliferation and significance of clinically relevant beta-lactamases. Ann N Y Acad Sci 1277:84–90CrossRefPubMedGoogle Scholar
  19. Bush K (2013b) The ABCD’s of beta-lactamase nomenclature. J Infect Chemother 19:549–559CrossRefPubMedGoogle Scholar
  20. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976CrossRefPubMedGoogle Scholar
  21. Cagnacci S, Gualco L, Debbia E, Schito GC, Marchese A (2008) European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol 46:2605–2612CrossRefPubMedPubMedCentralGoogle Scholar
  22. Can F, Azap OK, Seref C, Ispir P, Arslan H, Ergonul O (2015) Emerging Escherichia coli O25b/ST131 clone predicts treatment failure in urinary tract infections. Clin Infect Dis 60:523–527CrossRefPubMedGoogle Scholar
  23. Canton R, Coque TM (2006) The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 9:466–475CrossRefPubMedGoogle Scholar
  24. Castanon JIR (2007) History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 86:2466–2471CrossRefPubMedGoogle Scholar
  25. Chandramohan L, Revell PA (2012) Prevalence and molecular characterization of extended-spectrum-β-lactamase-producing Enterobacteriaceae in a pediatric patient population. Antimicrob Agents Chemother 56:4765–4770CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cho SY, Kang C-I, Cha MK, Wi YM, Ha YE, Chung DR, Lee NY, Peck KR, Song J-H (2015) Clinical features and treatment outcomes of bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli sequence type 131. Microb Drug Resist 21:463–469CrossRefPubMedGoogle Scholar
  27. Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D, Mulvey MR, Nordmann P, Ruppé E, Sarthou JL, Frank T, Vimont S, Arlet G, Branger C, Woodford N, Denamur E (2009) Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 64:274–277CrossRefPubMedGoogle Scholar
  28. Colpan A, Johnston B, Porter S, Clabots C, Anway R, Thao L, Kuskowski MA, Tchesnokova V, Sokurenko EV, Johnson JR, VICTORY (Veterans Influence of Clonal Types on Resistance: Year 2011) Investigators (2013) Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. Clin Infect Dis 57:1256–1265CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cosgrove SE, Hermsen ED, Rybak MJ, File TM, Parker SK, Barlam TF, Society for Healthcare Epidemiology of America, Infectious Diseases Society of America, Making-A-Difference in Infectious Diseases, National Foundation of Infectious Diseases, Pediatric Infectious Diseases Society, Society of Infectious Disease Pharmacists (2014) Guidance for the knowledge and skills required for antimicrobial stewardship leaders. Infect Control Hosp Epidemiol 35:1444–1451CrossRefPubMedGoogle Scholar
  30. Cummings KJ, Aprea VA, Altier C (2014) Antimicrobial resistance trends among Escherichia coli isolates obtained from dairy cattle in the northeastern United States, 2004–2011. Foodborne Pathog Dis 11:61–67CrossRefPubMedGoogle Scholar
  31. Curello J, MacDougall C (2014) Beyond susceptible and resistant, part II: treatment of infections due to gram-negative organisms producing extended-spectrum beta-lactamases. J Pediatr Pharmacol Ther 19:156–164PubMedPubMedCentralGoogle Scholar
  32. Curi B, Torres C, Yabar M (2014) Prevalencia de E. coli diarreogénicas en urocultivos de pacientes con diagnóstico de Infección del tracto urinario por E. coli en el Hospital Nacional Cayetano Heredia. Tesis para optar el grado de Bachiller en Medicina, Universidad Peruana Cayetano Heredia, Lima, PeruGoogle Scholar
  33. Dellit TH, Owens RC, McGowan JE, Gerding DN, Weinstein RA, Burke JP, Huskins WC, Paterson DL, Fishman NO, Carpenter CF, Brennan PJ, Billeter M, Hooton TM, Infectious Diseases Society of America, Society for Healthcare Epidemiology of America (2007) Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44:159–177CrossRefPubMedGoogle Scholar
  34. Durand D, Contreras CA, Mosquito S, Ruíz J, Cleary TG, Ochoa TJ. pic gene of enteroaggregative Escherichia coli and its association with diarrhea in Peruvian children. Pathog Dis. 2016 Aug;74(6). pii: ftw054. doi: 10.1093/femspd/ftw054. Epub 2016 Jun 14Google Scholar
  35. Fadlelmula A, Al-Hamam NA, Al-Dughaym AM (2016) A potential camel reservoir for extended-spectrum β-lactamase-producing Escherichia coli causing human infection in Saudi Arabia. Trop Anim Health Prod 48:427–433CrossRefPubMedGoogle Scholar
  36. Fernandez-Canigia L, Dowzicky MJ (2012) Susceptibility of important Gram-negative pathogens to tigecycline and other antibiotics in Latin America between 2004 and 2010. Ann Clin Microbiol Antimicrob 11:29CrossRefPubMedPubMedCentralGoogle Scholar
  37. Foster MA, Iqbal J, Zhang C, McHenry R, Cleveland BE, Romero-Herazo Y, Fonnesbeck C, Payne DC, Chappell JD, Halasa N, Gómez-Duarte OG (2015) Enteropathogenic and enteroaggregative E. coli in stools of children with acute gastroenteritis in Davidson County, Tennessee. Diagn Microbiol Infect Dis 83:319–324CrossRefPubMedGoogle Scholar
  38. Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1:191–203CrossRefPubMedGoogle Scholar
  39. Giuffrè M, Cipolla D, Bonura C, Geraci DM, Aleo A, Di Noto S, Nociforo F, Corsello G, Mammina C (2013) Outbreak of colonization by extended-spectrum β-lactamase-producing Escherichia coli sequence type 131 in a neonatal intensive care unit, Italy. Antimicrob Resist Infect Control 2:8CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gonzales L, Joffre E, Rivera R, Sjöling Å, Svennerholm A-M, Iñiguez V (2013) Prevalence, seasonality and severity of disease caused by pathogenic Escherichia coli in children with diarrhoea in Bolivia. J Med Microbiol 62:1697–1706CrossRefPubMedGoogle Scholar
  41. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, Wilson LE, Vaeth E, Lynfield R, Shaw KM, Vagnone PMS, Bamberg WM, Janelle SJ, Dumyati G, Concannon C, Beldavs Z, Cunningham M, Cassidy PM, Phipps EC, Kenslow N, Travis T, Lonsway D, Rasheed JK, Limbago BM, Kallen AJ (2015) Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US Communities, 2012–2013. JAMA 314:1479–1487CrossRefPubMedGoogle Scholar
  42. Gurnee EA, Ndao IM, Johnson JR, Johnston BD, Gonzalez MD, Burnham C-AD, Hall-Moore CM, McGhee JE, Mellmann A, Warner BB, Tarr PI (2015) Gut colonization of healthy children and their mothers with pathogenic ciprofloxacin-resistant Escherichia coli. J Infect Dis 212:1862–1868CrossRefPubMedGoogle Scholar
  43. Hawser SP, Bouchillon SK, Hoban DJ, Badal RE, Hackel MA, Lascols CA, Villegas MV, Rossi F (2012) Low frequency of ertapenem-resistant intra-abdominal isolates of Escherichia coli from Latin America: susceptibility, ESBL-occurrence, and molecular characterization (SMART 2008-2009). J Chemother 24:6–11CrossRefPubMedGoogle Scholar
  44. Hernández-Gómez C, Blanco VM, Motoa G, Correa A, Vallejo M, Villegas MV, Grupo de Resistencia Bacteriana Nosocomial en Colombia (2014) Evolution of antimicrobial resistance in Gram negative bacilli from intensive care units in Colombia. Biomedica 34(Suppl 1):91–100PubMedGoogle Scholar
  45. Ho P-L, Lo W-U, Lai EL, Law PY, Leung SM, Wang Y, Chow K-H (2015) Clonal diversity of CTX-M-producing, multidrug-resistant Escherichia coli from rodents. J Med Microbiol 64:185–190CrossRefPubMedGoogle Scholar
  46. Iqbal J, Dufendach KR, Wellons JC, Kuba MG, Nickols HH, Gómez-Duarte OG, Wynn JL (2016) Lethal neonatal meningoencephalitis caused by multi-drug resistant, highly virulent Escherichia coli. Infect Dis 48:461–466CrossRefGoogle Scholar
  47. Jiménez A, Alvarado A, Gómez F, Carrero G, Fajardo C (2014) Risk factors associated with the isolation of extended spectrum betalactamases producing Escherichia coli or Klebsiella pneumoniae in a tertiary care hospital in Colombia. Biomedica 34(Suppl 1):16–22PubMedGoogle Scholar
  48. Johnson JR, Drawz SM, Porter S, Kuskowski MA (2013) Susceptibility to alternative oral antimicrobial agents in relation to sequence type ST131 status and Coresistance phenotype among recent Escherichia coli isolates from U.S. veterans. Antimicrob Agents Chemother 57:4856–4860CrossRefPubMedPubMedCentralGoogle Scholar
  49. Johnson JR, Thuras P, Johnston BD, Weissman SJ, Limaye AP, Riddell K, Scholes D, Tchesnokova V, Sokurenko E (2016) The pandemic H30 subclone of Escherichia coli sequence type 131 is associated with persistent infections and adverse outcomes independent from its multidrug resistance and associations with compromised hosts. Clin Infect Dis 62:1529–1536CrossRefPubMedGoogle Scholar
  50. Karim A, Poirel L, Nagarajan S, Nordmann P (2001) Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett 201:237–241PubMedGoogle Scholar
  51. Logan LK, Braykov NP, Weinstein RA, Laxminarayan R, Epicenters Prevention Program CDC (2014) Extended-spectrum β-lactamase-producing and third-generation cephalosporin-resistant Enterobacteriaceae in children: trends in the United States, 1999–2011. J Pediatr Infect Dis Soc 3:320–328CrossRefGoogle Scholar
  52. Louie M, Cockerill FR 3rd (2001) Susceptibility testing. Phenotypic and genotypic tests for bacteria and mycobacteria. Infect Dis Clin North Am 15:1205–1226CrossRefPubMedGoogle Scholar
  53. Mathers AJ, Peirano G, Pitout JDD (2015) Escherichia coli ST131: the quintessential example of an international multiresistant high-risk clone. Adv Appl Microbiol 90:109–154CrossRefPubMedGoogle Scholar
  54. Millar MR, Seale J, Turton J, Wilks M, Costeloe K, Woodford N, Juszczak E, Whiley A, Panton N, Wareham DW (2016) ESBL-producing Enterobacteriaceae in 24 neonatal units and associated networks in the south of England: no clustering of ESBL-producing Escherichia coli in units or networks. J Antimicrob Chemother 71:1174–1177CrossRefPubMedGoogle Scholar
  55. Miranda-Estrada LI, Ruíz-Rosas M, Molina-López J, Parra-Rojas I, González-Villalobos E, Castro-Alarcón N. [Relationship between virulence factors, resistance to antibiotics and phylogenetic groups of uropathogenic Escherichia coli in two locations in Mexico]. Enferm Infecc Microbiol Clin. 2016 Apr 2. pii: S0213-005X(16)30006-4. doi: 10.1016/j.eimc.2016.02.021. [Epub ahead of print]Google Scholar
  56. Mora A, Herrera A, Mamani R, López C, Alonso MP, Blanco JE, Blanco M, Dahbi G, García-Garrote F, Pita JM, Coira A, Bernárdez MI, Blanco J (2010) Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl Environ Microbiol 76:6991–6997CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mosquito S, Ruiz J, Bauer JL, Ochoa TJ (2011) Molecular mechanisms of antibiotic resistance in Escherichia coli-associated diarrhea. Rev Peru Med Exp Salud Publica 28:648–656PubMedGoogle Scholar
  58. Mosquito S, Ruiz J, Pons MJ, Durand D, Barletta F, Ochoa TJ (2012) Molecular mechanisms of antibiotic resistance in diarrhoeagenic Escherichia coli isolated from children. Int J Antimicrob Agents 40:544–548CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nicolas-Chanoine M-H, Bertrand X, Madec J-Y (2014) Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27:543–574CrossRefPubMedPubMedCentralGoogle Scholar
  60. Olson AB, Silverman M, Boyd DA, McGeer A, Willey BM, Pong-Porter V, Daneman N, Mulvey MR (2005) Identification of a progenitor of the CTX-M-9 group of extended-spectrum beta-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob Agents Chemother 49:2112–2115CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pallecchi L, Riccobono E, Mantella A, Bartalesi F, Sennati S, Gamboa H, Gotuzzo E, Bartoloni A, Rossolini GM (2009) High prevalence of qnr genes in commensal enterobacteria from healthy children in Peru and Bolivia. Antimicrob Agents Chemother 53:2632–2635CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pallecchi L, Riccobono E, Mantella A, Fernandez C, Bartalesi F, Rodriguez H, Gotuzzo E, Bartoloni A, Rossolini GM (2011) Small qnrB-harbouring ColE-like plasmids widespread in commensal enterobacteria from a remote Amazonas population not exposed to antibiotics. J Antimicrob Chemother 66:1176–1178CrossRefPubMedGoogle Scholar
  63. Pan American Health Organization (2013) PAHO Technical Advisory Group on antimicrobial resistance and infection prevention and control: biennial meeting final report. Washington, DCGoogle Scholar
  64. Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18:657–686CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pérez C, Gómez-Duarte OG, Arias ML (2010) Diarrheagenic Escherichia coli in children from Costa Rica. Am J Trop Med Hyg 83:292–297CrossRefPubMedPubMedCentralGoogle Scholar
  66. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan M-D, Gomes Moriel D, Peters KM, Davies M, Rogers BA, Dougan G, Rodriguez-Baño J, Pascual A, Pitout JDD, Upton M, Paterson DL, Walsh TR, Schembri MA, Beatson SA (2014) Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A 111:5694–5699CrossRefPubMedPubMedCentralGoogle Scholar
  67. Philippon A, Labia R, Jacoby G (1989) Extended-spectrum beta-lactamases. Antimicrob Agents Chemother 33:1131–1136CrossRefPubMedPubMedCentralGoogle Scholar
  68. Piazza A, Caltagirone M, Bitar I, Nucleo E, Spalla M, Fogato E, D’Angelo R, Pagani L, Migliavacca R (2016) Emergence of Escherichia coli sequence Type 131 (ST131) and ST3948 with KPC-2, KPC-3 and KPC-8 carbapenemases from a long-term care and rehabilitation facility (LTCRF) in Northern Italy. Adv Exp Med Biol 901:77–89CrossRefPubMedGoogle Scholar
  69. Pietsch M, Eller C, Wendt C, Holfelder M, Falgenhauer L, Fruth A, Grössl T, Leistner R, Valenza G, Werner G, Pfeifer Y; RESET Study Group. Molecular characterisation of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from hospital and ambulatory patients in Germany. Vet Microbiol. 2015 Nov 24. pii: S0378-1135(15)30097-3. doi: 10.1016/j.vetmic.2015.11.028. [Epub ahead of print]Google Scholar
  70. Platell JL, Cobbold RN, Johnson JR, Heisig A, Heisig P, Clabots C, Kuskowski MA, Trott DJ (2011) Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob Agents Chemother 55:3782–3787CrossRefPubMedPubMedCentralGoogle Scholar
  71. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, Nordstrom L, Billig M, Chattopadhyay S, Stegger M, Andersen PS, Pearson T, Riddell K, Rogers P, Scholes D, Kahl B, Keim P, Sokurenko EV (2013) The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio 4:e00377-313Google Scholar
  72. Reyna-Flores F, Barrios H, Garza-Ramos U, Sánchez-Pérez A, Rojas-Moreno T, Uribe-Salas FJ, Fagundo-Sierra R, Silva-Sanchez J (2013) Molecular epidemiology of Escherichia coli O25b-ST131 isolates causing community-acquired UTIs in Mexico. Diagn Microbiol Infect Dis 76:396–398CrossRefPubMedGoogle Scholar
  73. Riveros M, Riccobono E, Durand D, Mosquito S, Ruiz J, Rossolini GM, Ochoa TJ, Pallecchi L (2012) Plasmid-mediated quinolone resistance genes in enteroaggregative Escherichia coli from infants in Lima, Peru. Int J Antimicrob Agents 39:540–542CrossRefPubMedGoogle Scholar
  74. Rodríguez MM, Power P, Radice M, Vay C, Famiglietti A, Galleni M, Ayala JA, Gutkind G (2004) Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob Agents Chemother 48:4895–4897CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rogers BA, Sidjabat HE, Paterson DL (2011) Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 66:1–14CrossRefPubMedGoogle Scholar
  76. Scherz G, Stahl J, Glünder G, Kietzmann M (2014) Effects of carry-over of fluoroquinolones on the susceptibility of commensal Escherichia coli in the intestinal microbiota of poultry. Berl Munch Tierarztl Wochenschr 127:478–485PubMedGoogle Scholar
  77. Shakir SM, Goldbeck JM, Robison D, Eckerd AM, Chavez-Bueno S (2014) Genotypic and phenotypic characterization of invasive neonatal Escherichia coli clinical isolates. Am J Perinatol 31:975–982CrossRefPubMedGoogle Scholar
  78. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22:664–689CrossRefPubMedPubMedCentralGoogle Scholar
  79. Suwantarat N, Rudin SD, Marshall SH, Hujer AM, Perez F, Hujer KM, Domitrovic TNJ, Dumford DM, Donskey CJ, Bonomo RA (2014) Infections caused by fluoroquinolone-resistant Escherichia coli following transrectal ultrasound-guided biopsy of the prostate. J Glob Antimicrob Resist 2:71–76CrossRefPubMedGoogle Scholar
  80. Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF (2012) Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerging Infect Dis 18:741–749CrossRefPubMedPubMedCentralGoogle Scholar
  81. Teichmann A, de Cunha Agra HN, Nunes L de S, da Rocha MP, Renner JDP, Possuelo LG, Carneiro M, Rieger A, Benitez LB, Valim AR de M (2014) Antibiotic resistance and detection of the sul2 gene in urinary isolates of Escherichia coli in patients from Brazil. J Infect Dev Ctries 8:39–43CrossRefPubMedGoogle Scholar
  82. Valenza G, Nickel S, Pfeifer Y, Pietsch M, Voigtländer E, Lehner-Reindl V, Höller C. Prevalence and genetic diversity of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in nursing homes in Bavaria, Germany. Vet Microbiol. 2015 Oct 19. pii: S0378-1135(15)30048-1. doi:  10.1016/j.vetmic.2015.10.008. [Epub ahead of print]Google Scholar
  83. Vélez Echeverri C, Serna-Higuita LM, Serrano AK, Ochoa-García C, Rojas Rosas L, María Bedoya A, Suárez M, Hincapié C, Henao A, Ortiz D, Vanegas JJ, Zuleta JJ, Espinal D (2014) Resistance profile for pathogens causing urinary tract infection in a pediatric population, and antibiotic treatment response at a university hospital, 2010–2011. Colomb Med 45:39–44PubMedPubMedCentralGoogle Scholar
  84. Villar HE, Aubert V, Baserni MN, Jugo MB (2013) Maternal carriage of extended-spectrum beta-lactamase-producing Escherichia coli isolates in Argentina. J Chemother 25:324–327CrossRefPubMedGoogle Scholar
  85. Weissman SJ, Hansen NI, Zaterka-Baxter K, Higgins RD, Stoll BJ. Emergence of Antibiotic Resistance-Associated Clones Among Escherichia coli Recovered From Newborns With Early-Onset Sepsis and Meningitis in the United States, 2008-2009. J Pediatric Infect Dis Soc. 2015 Mar 31. pii: piv013. [Epub ahead of print]Google Scholar
  86. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MCJ, Ochman H, Achtman M (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wirtz VJ, Dreser A, Gonzales R (2010) Trends in antibiotic utilization in eight Latin American countries, 1997–2007. Rev Panam Salud Publica 27:219–225CrossRefPubMedGoogle Scholar
  88. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  89. World Health Organization (2015) Worldwide country situation analysis: response to antimicrobial resistance. Geneva, SwitzerlandGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de PediatríaInstituto de Medicina Tropical, Universidad Peruana Cayetano HerediaLimaPeru
  2. 2.Center for Infectious Diseases, School of Public Health, University of Texas Health Science CenterHoustonUSA
  3. 3.Division of Pediatric Infectious DiseasesVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations