Advertisement

Homeostasis vs. Dysbiosis: Role of Commensal Escherichia coli in Disease

  • Claudia F. Martinez de la PeñaEmail author
  • Glen D. Armstrong
  • Margarita M. P. Arenas-Hernández
  • Roberto J. Cieza

Summary

Since the beginning, life on Earth has been influenced by the association between organisms and this continuous co-evolutionary process, led in life as we know it today. In this process, humans and microorganisms developed an intimate relationship known as the human microbiome. Any disturbance in our resident microbial community such as a shift away from homeostasis likely expresses itself in a pathological state. In this context, the term dysbiosis is used to describe a state of imbalance between the microbial population and the host species. E. coli, as part of our normal microbiome play an important role in homeostasis and it also has been linked to dysbiotic process. In the present chapter, we describe the role of different E. coli strains that have been linked to homeostasis and dysbiosis. Adherent Invasive E. coli (AIEC), lacking the known virulence factors of other pathogenic strains, is involved in inflammatory bowel disease (IBD). Enterohemorrhagic E. coli, together with the by-products of other members of the microbiome, colonize the human colon and E. coli Nissle is involved in maintaining homeostasis between host and its associated microbiome. The most recent studies in all Americas are also included in the present work.

Keywords

Homeostasis Dysbiosis AIEC Nissle EHEC 

References

  1. Ananthakrishnan AN (2015) Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12:205–217CrossRefPubMedGoogle Scholar
  2. Barnich N (2007) CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 117:1566–1574CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barnich N, Boudeau J, Claret L, Darfeuille-Michaud A (2003) Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn’s disease. Mol Microbiol 48:781–794CrossRefPubMedGoogle Scholar
  4. Barreto I, Carmona R, Díaz F (2010) Prevalencia y características demográficas de la enfermedad inflamatoria intestinal en Cartagena, Colombia. Rev Colomb Gastroenterol 2:107–111Google Scholar
  5. Baumler AJ, Tsolis RM, Heffron F (1996) The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc Natl Acad Sci 93:279–283CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bertin Y, Chaucheyras Durand F, Robbe Masselot C et al (2013) Carbohydrate utilization by enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. Environ Microbiol 15:610–622CrossRefPubMedGoogle Scholar
  7. Boudeau J, Glasser A-L, Julien S et al (2003) Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn’s disease. Aliment Pharmacol Ther 18:45–56CrossRefPubMedGoogle Scholar
  8. Bringer M-A, Glasser A-L, Tung C-H et al (2006) The Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cell Microbiol 8:471–484CrossRefPubMedGoogle Scholar
  9. Carbonetto B, Fabbro MC, Sciara M et al (2016) Human microbiota of the argentine population—a pilot study. Front Microbiol 7:51CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carvalho FA, Barnich N, Sivignon A et al (2009) Crohn’s disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med 206:2179–2189CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chassaing B, Rolhion N, de Vallee A et al (2011) Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest 121:966–975CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cieza RJ, Hu J, Ross BN et al (2015) The IbeA invasin of adherent-invasive Escherichia coli mediates interaction with intestinal epithelia and macrophages. Infect Immun 83:1904–1918CrossRefPubMedPubMedCentralGoogle Scholar
  13. Consortium THMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  14. Cooney R, Baker J, Brain O et al (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16:90–97CrossRefPubMedGoogle Scholar
  15. Croxen MA, Law RJ, Scholz R et al (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26:822–880CrossRefPubMedPubMedCentralGoogle Scholar
  16. Darfeuille-Michaud A (2002) Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn’s disease. Int J Med Microbiol 292:185–193CrossRefPubMedGoogle Scholar
  17. Darfeuille-Michaud A, Neut C, Barnich N et al (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 115:1405–1413CrossRefPubMedGoogle Scholar
  18. Darfeuille-Michaud A, Boudeau J, Bulois P et al (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127:412–421CrossRefPubMedGoogle Scholar
  19. de Lange KM, Barrett JC (2015) Understanding inflammatory bowel disease via immunogenetics. J Autoimmun 64:91–100CrossRefPubMedGoogle Scholar
  20. de Sablet T (2009) Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect Immun 77:783–790CrossRefPubMedGoogle Scholar
  21. Desilets M, Deng X, Rao C et al (2016) Genome-based definition of an inflammatory bowel disease-associated adherent-invasive Escherichia coli pathovar. Inflamm Bowel Dis 22:1–12CrossRefPubMedGoogle Scholar
  22. Dreux N, Denizot J, Martinez-Medina M et al (2013) Point mutations in FimH adhesin of Crohn’s disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathog 9, e1003141CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eaves-Pyles T, Allen CA, Taormina J et al (2008) Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 298:397–409CrossRefPubMedGoogle Scholar
  24. Economou M, Trikalinos TA, Loizou KT et al (2004) Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a meta-analysis. Am J Gastroenterol 99:2393–2404CrossRefPubMedGoogle Scholar
  25. Escobar JS, Klotz B, Valdes BE, Agudelo GM (2014) The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol 14:1CrossRefGoogle Scholar
  26. Espinoza R, Quera R, Meyer L, Rivera D (2014) Trasplante de microbiota fecal: primer caso reportado en Chile y revisión de la literatura. Rev Chilena Infectol 31:477–482CrossRefPubMedGoogle Scholar
  27. Fabich AJ, Jones SA, Chowdhury FZ et al (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fischer H, Yamamoto M, Akira S et al (2006) Mechanism of pathogen‐specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur J Immunol 36:267–277CrossRefPubMedGoogle Scholar
  29. Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 104:13780–13785CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gibold L, Garenaux E, Dalmasso G et al (2015) The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn’s disease-associated Escherichia coli. Cell Microbiol 5:617–631Google Scholar
  31. Hase K, Kawano K, Nochi T et al (2009) Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462:226–230CrossRefPubMedGoogle Scholar
  32. Herold S, Paton JC, Srimanote P, Paton AW (2009) Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli. Microbiology 155:3554–3563CrossRefPubMedGoogle Scholar
  33. Huang SH, Wan ZS, Chen YH et al (2001) Further characterization of Escherichia coli brain microvascular endothelial cell invasion gene ibeA by deletion, complementation, and protein expression. J Infect Dis 183:1071–1078CrossRefPubMedGoogle Scholar
  34. Janka Babickova RG (2015) Pathological and therapeutic interactions between bacteriophages, microbes and the host in inflammatory bowel disease. World J Gastroenterol 21:11321–11330CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jensen SR, Nielsen OH, Brix S (2011) Are NOD2 polymorphisms linked to a specific disease endophenotype of Crohn’s disease? Inflamm Bowel Dis 17:2392–2401CrossRefPubMedGoogle Scholar
  36. Keely S, Walker MM, Marks E, Talley NJ (2015) Immune dysregulation in the functional gastrointestinal disorders. Eur J Clin Invest 45:1350–1359CrossRefPubMedGoogle Scholar
  37. Kendall MM, Gruber CC, Parker CT, Sperandio V (2012) Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. mBio 3:e00050–12CrossRefPubMedPubMedCentralGoogle Scholar
  38. la Fuente DM, Franchi L, Araya D et al (2014) Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. Int J Med Microbiol 304:384–392CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lapaquette P, Darfeuille-Michaud A (2010) Abnormalities in the handling of intracellular bacteria in Crohn’s disease. J Clin Gastroenterol 44:S26–S29CrossRefPubMedGoogle Scholar
  40. Lasaro MA, Salinger N, Zhang J et al (2009) F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol 75:246–251CrossRefPubMedGoogle Scholar
  41. Lebeer S, Vanderleyden J, De Keersmaecker SCJ (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8(3):171–184CrossRefPubMedGoogle Scholar
  42. Lederberg J, Mccray AT (2001) ‘Ome Sweet’ omics—a genealogical treasury of words. Scientist 15:8Google Scholar
  43. Lloyd SJ, Ritchie JM, Rojas-Lopez M et al (2012) A double, long polar fimbria mutant of Escherichia coli O157:H7 expresses curli and exhibits reduced in vivo colonization. Infect Immun 80:914–920CrossRefPubMedPubMedCentralGoogle Scholar
  44. Martinez-Medina M, Garcia-Gil LJ (2014) Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 5:213–227PubMedPubMedCentralGoogle Scholar
  45. Miquel S, Peyretaillade E, Claret L et al (2010) Complete genome sequence of Crohn’s disease-associated adherent-invasive E. coli strain LF82. PLoS One 5:e12714CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mizoguchi A, Takeuchi T, Himuro H et al (2016) Genetically engineered mouse models for studying inflammatory bowel disease. J Pathol 238:205–219CrossRefPubMedGoogle Scholar
  47. Nakanishi N, Tashiro K, Kuhara S et al (2009) Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155:521–530CrossRefPubMedGoogle Scholar
  48. Nash JH, Villegas A, Kropinski AM et al (2010) Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics 11:667CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nguyen HTT, Dalmasso G, Muller S et al (2014) Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146:508–519CrossRefPubMedGoogle Scholar
  50. Nilsson LM, Thomas WE, Sokurenko EV, Vogel V (2006) Elevated shear stress protects Escherichia coli cells adhering to surfaces via catch bonds from detachment by soluble inhibitors. Appl Environ Microbiol 72:3005–3010CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nissle A (1918) Die antagonistische Behandlung chronischer Darmstörungen mit Colibakterien. Med Klin 2:29–33Google Scholar
  52. O’Brien CL, Pavli P, Gordon DM, Allison GE (2014) Detection of bacterial DNA in lymph nodes of Crohn’s disease patients using high throughput sequencing. Gut 63:1596–1606CrossRefPubMedGoogle Scholar
  53. Pacheco AR, Sperandio V (2015) Enteric pathogens exploit the microbiota-generated nutritional environment of the gut. Microbiol Spectr 3(3)Google Scholar
  54. Pacheco AR, Curtis MM, Ritchie JM et al (2012) Fucose sensing regulates bacterial intestinal colonization. Nature 492:113–117CrossRefPubMedPubMedCentralGoogle Scholar
  55. Packey CD, Sartor RB (2009) Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr Opin Infect Dis 22:292–301CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pifer R, Sperandio V (2014) The interplay between the microbiota and enterohemorrhagic Escherichia coli. Microbiol Spectr 2(5)Google Scholar
  57. Rolhion N, Barnich N, Claret L, Darfeuille-Michaud A (2005) Strong decrease in invasive ability and outer membrane vesicle release in Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J Bacteriol 187:2286–2296CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rolhion N, Barnich N, Bringer M-A et al (2010) Abnormally expressed ER stress response chaperone Gp96 in CD favors adherent-invasive Escherichia coli invasion. Gut 59:1355–1362CrossRefPubMedPubMedCentralGoogle Scholar
  59. Romero M, Artigiani R, Costa H et al (2008) Evaluation of the immunoexpression of COX-1, COX-2 and p53 in Crohn’s disease. Arq Gastroenterol 45:295–300CrossRefPubMedGoogle Scholar
  60. Schlee M, Wehkamp J, Altenhoefer A et al (2007) Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun 75:2399–2407CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sepehri S, Khafipour E, Bernstein CN et al (2011) Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease. Inflamm Bowel Dis 17:1451–1463CrossRefPubMedGoogle Scholar
  62. Short SS, Wang J, Castle SL et al (2013) Low doses of celecoxib attenuate gut barrier failure during experimental peritonitis. Lab Invest 93:1265–1275CrossRefPubMedPubMedCentralGoogle Scholar
  63. Small C-LN, Reid-Yu SA, McPhee JB, Coombes BK (2013) Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun 4:1957CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sokol H, Seksik P, Rigottier-Gois L et al (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111CrossRefPubMedGoogle Scholar
  65. Sonnenborn U, Schulze J (2009) The non-pathogenic Escherichia coli strain Nissle 1917—features of a versatile probiotic. Microb Ecol Health Dis 21:122–158CrossRefGoogle Scholar
  66. Souza ÉL, Elian SD, Paula LM et al (2016) Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model. J Med Microbiol 65:201–210CrossRefPubMedGoogle Scholar
  67. Thomazini CM, Samegima D (2011) High prevalence of aggregative adherent Escherichia coli strains in the mucosa-associated microbiota of patients with inflammatory bowel diseases. Intl J Med Microbiol 6:475–479CrossRefGoogle Scholar
  68. Tobe T, Nakanishi N, Sugimoto N (2011) Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect Immun 79:1016–1024CrossRefPubMedGoogle Scholar
  69. Torres AG, Girón JA, Perna NT et al (2002) Identification and characterization of lpfABCC’DE, a fimbrial operon of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 70:5416–5427CrossRefPubMedPubMedCentralGoogle Scholar
  70. Torres AG, Kanack KJ, Tutt CB et al (2004) Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett 238:333–344PubMedGoogle Scholar
  71. Travassos LH, Carneiro LAM, Ramjeet M et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62CrossRefPubMedGoogle Scholar
  72. Vargas RD (2010) Epidemiología de la enfermedad inflamatoria intestinal: ¿por qué las diferencias entre Norteamérica y Latinoamérica? Rev Colomb Gastroenterol 25(2):103–105Google Scholar
  73. Vazeille E, Chassaing B, Buisson A et al (2016) GipA factor supports colonization of Peyer’s patches by Cohn’s disease-associated Escherichia coli. Inflamm Bowel Dis 22:68–81CrossRefPubMedGoogle Scholar
  74. Victoria CR, Sassak LY, Nunes HR de C (2009) Incidence and prevalence rates of inflammatory bowel diseases, in Midwestern of São Paulo State, Brazil. Arq Gastroenterol 46:20–25CrossRefPubMedGoogle Scholar
  75. Vogt SL, Pena-Diaz J, Finlay BB (2015) Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 34:106–115CrossRefPubMedGoogle Scholar
  76. Yazdanyar S, Weischer M, Nordestgaard BG (2009) Genotyping for NOD2 genetic variants and Crohn disease: a meta-analysis. Clin Chem 55:1950–1957CrossRefPubMedGoogle Scholar
  77. Zhang Y, Rowehl L, Krumsiek JM et al (2015) Identification of candidate adherent-invasive E. coli signature transcripts by genomic/transcriptomic analysis. PLoS One 10, e0130902CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zumbrun SD, Melton-Celsa AR, Smith MA et al (2013) Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease. Proc Natl Acad Sci U S A 110:E2126–E2133CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Claudia F. Martinez de la Peña
    • 1
    Email author
  • Glen D. Armstrong
    • 2
  • Margarita M. P. Arenas-Hernández
    • 1
  • Roberto J. Cieza
    • 3
  1. 1.Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de PueblaPueblaMéxico
  2. 2.Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
  3. 3.Department of MicrobiologyUniformed Services University of the Health Sciences (USUHS)BethesdaUSA

Personalised recommendations