Secretion Systems of Pathogenic Escherichia coli

  • Fernando Navarro-GarciaEmail author
  • Fernando Ruiz-Perez
  • Mariano Larzábal
  • Angel Cataldi


Protein secretion plays a central role in modulating the interactions of bacteria with their environments. Bacterial ribosomes synthesize up to 8000 different proteins. Almost half of these become integrated in membranes and are secreted to the periplasm or to the external milieu. Many bacterial processes, such as DNA replication, motility, transport, antibiotic resistance, scavenging of chemicals, and pathogenesis, depend on protein secretion. Thereby, evolutionarily unrelated protein nanomachines have been developed, which allow exported proteins to cross the Gram-negative membranes. Bacterial proteins can be exported directly from the cytoplasm out of the cell by a one-step (cytoplasm to extracellular milieu), including the type I secretion system (T1SS), T3SS, T4SS, and T6SS, or two-step (periplasm translocation step), including the T2SS and T5SS, while the T4SS can use either the one- or two-step mechanism. The T3SS, T5SS, and T6SS are the more common secretion systems in Escherichia coli and most of the secreted substrates are virulence factors related to pathogenic E. coli. In this chapter, we will describe the main characteristic of these last three secretion systems.


Diarrheagenic E. coli Gram-negative bacteria Bacterial protein secretion Protein translocation Effector proteins 


  1. Abreu AG, Abe CM, Nune KO, Moraes CT, Chavez-Duenas L, Navarro-Garcia F, Barbosa AS, Piazza RM, Elias WP (2016) The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli. Gut Microbes 7(2):115–125PubMedCrossRefGoogle Scholar
  2. Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S, McMahon SA, Ghosh P, Hughes TR, Boone C, Dixon JE (2006) Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124(1):133–145PubMedCrossRefGoogle Scholar
  3. Anderson MS, Garcia EC, Cotter PA (2012) The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genet 8(8), e1002877PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arbeloa A, Garnett J, Lillington J, Bulgin RR, Berger CN, Lea SM, Matthews S, Frankel G (2010) EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol 12(5):654–664PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aschtgen M-S, Gavioli M, Dessen A, Lloubès R, Cascales E (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol 75:886–899PubMedCrossRefGoogle Scholar
  6. Ashida H, Ogawa M, Mimuro H, Kobayashi T, Sanada T, Sasakawa C (2011) Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Curr Opin Immunol 23(4):448–455PubMedCrossRefGoogle Scholar
  7. Aubert D, MacDonald DK, Valvano MA (2010) BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem 285:35988–35998PubMedPubMedCentralCrossRefGoogle Scholar
  8. Batchelor M, Guignot J, Patel A, Cummings N, Cleary J, Knutton S, Holden DW, Connerton I, Frankel G (2004) Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep 5(1):104–110PubMedCrossRefGoogle Scholar
  9. Benz I, Schmidt MA (2001) Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol 40(6):1403–1413PubMedCrossRefGoogle Scholar
  10. Bingle LE, Constantinidou C, Shaw RK, Islam MS, Patel M, Snyder LA, Lee DJ, Penn CW, Busby SJ, Pallen MJ (2014) Microarray analysis of the Ler regulon in enteropathogenic and enterohaemorrhagic Escherichia coli strains. PLoS One 9(1), e80160PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blasche S, Mortl M, Steuber H, Siszler G, Nisa S, Schwarz F, Lavrik I, Gronewold TM, Maskos K, Donnenberg MS, Ullmann D, Uetz P, Kogl M (2013) The E. coli effector protein NleF is a caspase inhibitor. PLoS One 8(3), e58937PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A (2001) Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol 39(3):652–663PubMedCrossRefGoogle Scholar
  13. Brunet YR, Bernard CS, Gavioli M, Lloubès R, Cascales E (2011) An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet 7, e1002205PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brunet YR, Espinosa L, Harchouni S, Mignot T, Cascales E (2013) Imaging type VI secretion-mediated bacterial killing. Cell Rep 3(1):36–41PubMedCrossRefGoogle Scholar
  15. Bulgin RR, Arbeloa A, Chung JC, Frankel G (2009) EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. Cell Microbiol 11(2):217–229PubMedCrossRefGoogle Scholar
  16. Bustamante VH, Villalba MI, Garcia-Angulo VA, Vazquez A, Martinez LC, Jimenez R, Puente JL (2011) PerC and GrlA independently regulate Ler expression in enteropathogenic Escherichia coli. Mol Microbiol 82(2):398–415PubMedCrossRefGoogle Scholar
  17. Campellone KG, Rankin S, Pawson T, Kirschner MW, Tipper DJ, Leong JM (2004) Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 164(3):407–416PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cascales E, Cambillau C (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci 367:1102–1111PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chang JH, Kim Y-G (2015) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol 53:32–37PubMedCrossRefGoogle Scholar
  20. Cheng HC, Skehan BM, Campellone KG, Leong JM, Rosen MK (2008) Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U). Nature 454(7207):1009–1013PubMedPubMedCentralCrossRefGoogle Scholar
  21. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13(6):343–359PubMedCrossRefGoogle Scholar
  22. Creasey EA, Friedberg D, Shaw RK, Umanski T, Knutton S, Rosenshine I, Frankel G (2003) CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149(Pt 12):3639–3647PubMedCrossRefGoogle Scholar
  23. Crepin VF, Shaw R, Abe CM, Knutton S, Frankel G (2005) Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J Bacteriol 187(8):2881–2889PubMedPubMedCentralCrossRefGoogle Scholar
  24. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26(4):822–880PubMedPubMedCentralCrossRefGoogle Scholar
  25. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vazquez A, Barba J, Ibarra JA, O’Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB (2004) Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101(10):3597–3602PubMedPubMedCentralCrossRefGoogle Scholar
  26. Deng W, Yu HB, de Hoog CL, Stoynov N, Li Y, Foster LJ, Finlay BB (2012) Quantitative proteomic analysis of type III secretome of enteropathogenic Escherichia coli reveals an expanded effector repertoire for attaching/effacing bacterial pathogens. Mol Cell Proteomics 11(9):692–709PubMedPubMedCentralCrossRefGoogle Scholar
  27. Doyle MT, Tran EN, Morona R (2015) The passenger-associated transport repeat promotes virulence factor secretion efficiency and delineates a distinct autotransporter subtype. Mol Microbiol 97(2):315–329PubMedCrossRefGoogle Scholar
  28. Drobnak I, Braselmann E, Clark PL (2015) Multiple driving forces required for efficient secretion of autotransporter virulence proteins. J Biol Chem 290(16):10104–10116PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dudley EG, Thomson NR, Parkhill J, Morin NP, Nataro JP (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol 61(5):1267–1282PubMedCrossRefGoogle Scholar
  30. Durand E, Cambillau C, Cascales E, Journet L (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol 22:498–507PubMedCrossRefGoogle Scholar
  31. English G, Byron O, Cianfanelli FR, Prescott AR, Coulthurst SJ (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem J 461:291–304PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, Buchanan SK (2012) Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis. Structure 20(7):1233–1243PubMedPubMedCentralCrossRefGoogle Scholar
  33. Garmendia J, Phillips AD, Carlier MF, Chong Y, Schuller S, Marches O, Dahan S, Oswald E, Shaw RK, Knutton S, Frankel G (2004) TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6(12):1167–1183PubMedCrossRefGoogle Scholar
  34. Gode-Potratz CJ, McCarter LL (2011) Quorum sensing and silencing in Vibrio parahaemolyticus. J Bacteriol 193:4224–4237PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gruber CC, Sperandio V (2015) Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 83(4):1286–1295PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hayes CS, Aoki SK, Low DA (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet 44:71–90PubMedCrossRefGoogle Scholar
  37. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68(4):692–744PubMedPubMedCentralCrossRefGoogle Scholar
  38. Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, Chai J, Alto NM (2009) Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 16(8):853–860PubMedCrossRefGoogle Scholar
  39. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62(2):379–433PubMedPubMedCentralGoogle Scholar
  40. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3(10):669–679PubMedCrossRefGoogle Scholar
  41. Iyoda S, Watanabe H (2005) ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187(12):4086–4094PubMedPubMedCentralCrossRefGoogle Scholar
  42. Iyoda S, Koizumi N, Satou H, Lu Y, Saitoh T, Ohnishi M, Watanabe H (2006) The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. J Bacteriol 188(16):5682–5692PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jacob-Dubuisson F, Guerin J, Baelen S, Clantin B (2013) Two-partner secretion: as simple as it sounds? Res Microbiol 164(6):583–595PubMedCrossRefGoogle Scholar
  44. Jenkins C, Perry NT, Cheasty T, Shaw DJ, Frankel G, Dougan G, Gunn GJ, Smith HR, Paton AW, Paton JC (2003) Distribution of the saa gene in strains of Shiga toxin-producing Escherichia coli of human and bovine origins. J Clin Microbiol 41(4):1775–1778PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jimenez R, Cruz-Migoni SB, Huerta-Saquero A, Bustamante VH, Puente JL (2010) Molecular characterization of GrlA, a specific positive regulator of ler expression in enteropathogenic Escherichia coli. J Bacteriol 192(18):4627–4642PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kawamoto A, Morimoto YV, Miyata T, Minamino T, Hughes KT, Kato T, Namba K (2013) Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci Rep 3:3369PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kendall MM, Gruber CC, Parker CT, Sperandio V (2012) Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. mBio 3(3):e00050. doi: 10.1128/mBio.00050-12 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Klemm P, Vejborg RM, Sherlock O (2006) Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol 296(4–5):187–195PubMedCrossRefGoogle Scholar
  49. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE, Aizawa SI (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280(5363):602–605PubMedCrossRefGoogle Scholar
  50. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106:4154–4159PubMedPubMedCentralCrossRefGoogle Scholar
  51. Leo JC, Goldman A (2009) The immunoglobulin-binding Eib proteins from Escherichia coli are receptors for IgG Fc. Mol Immunol 46(8–9):1860–1866PubMedCrossRefGoogle Scholar
  52. Leyton DL, Johnson MD, Thapa R, Huysmans GH, Dunstan RA, Celik N, Shen HH, Loo D, Belousoff MJ, Purcell AW, Henderson IR, Beddoe T, Rossjohn J, Martin LL, Strugnell RA, Lithgow T (2014) A mortise-tenon joint in the transmembrane domain modulates autotransporter assembly into bacterial outer membranes. Nat Commun 5:4239PubMedCrossRefGoogle Scholar
  53. Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kuhn R (2001) Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASPdefective cells. EMBO reports 2(9):850–857. doi: 10.1093/embo-reports/kve197 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lu Q, Yao Q, Xu Y, Li L, Li S, Liu Y, Gao W, Niu M, Sharon M, Ben-Nissan G, Zamyatina A, Liu X, Chen S, Shao F (2014) An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis. Cell Host Microbe 16(3):351–363PubMedCrossRefGoogle Scholar
  55. Luo W, Donnenberg MS (2011) Interactions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB. J Bacteriol 193(12):2972–2980PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lv Y, Xiao J, Liu Q, Wu H, Zhang Y, Wang Q (2012) Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda. Vet Microbiol 157:190–199PubMedCrossRefGoogle Scholar
  57. Ma C, Wickham ME, Guttman JA, Deng W, Walker J, Madsen KL, Jacobson K, Vogl WA, Finlay BB, Vallance BA (2006) Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell Microbiol 8(10):1669–1686PubMedCrossRefGoogle Scholar
  58. Maresca M, Miller D, Quitard S, Dean P, Kenny B (2005) Enteropathogenic Escherichia coli (EPEC) effector-mediated suppression of antimicrobial nitric oxide production in a small intestinal epithelial model system. Cell Microbiol 7(12):1749–1762PubMedCrossRefGoogle Scholar
  59. Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A (2004) Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 23(17):3570–3582PubMedPubMedCentralCrossRefGoogle Scholar
  60. Merkel V, Ohder B, Bielaszewska M, Zhang W, Fruth A, Menge C, Borrmann E, Middendorf B, Muthing J, Karch H, Mellmann A (2010) Distribution and phylogeny of immunoglobulin-binding protein G in Shiga toxin-producing Escherichia coli and its association with adherence phenotypes. Infect Immun 78(8):3625–3636PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mitra A, Fay PA, Morgan JK, Vendura KW, Versaggi SL, Riordan JT (2012) Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli. PLoS One 7(9), e46288PubMedPubMedCentralCrossRefGoogle Scholar
  62. Miyata ST, Unterweger D, Rudko SP, Pukatzki S (2013) Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog 9(12), e1003752PubMedPubMedCentralCrossRefGoogle Scholar
  63. Monjaras Feria J, Garcia-Gomez E, Espinosa N, Minamino T, Namba K, Gonzalez-Pedrajo B (2012) Role of EscP (Orf16) in injectisome biogenesis and regulation of type III protein secretion in enteropathogenic Escherichia coli. J Bacteriol 194(22):6029–6045PubMedPubMedCentralCrossRefGoogle Scholar
  64. Navarro-Garcia F, Sonnested M, Teter K (2010) Host-toxin interactions involving EspC and pet, two serine protease autotransporters of the Enterobacteriaceae. Toxins 2(5):1134–1147PubMedPubMedCentralCrossRefGoogle Scholar
  65. Navarro-Garcia F, Serapio-Palacios A, Ugalde-Silva P, Tapia-Pastrana G, Chavez-Duenas L (2013) Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BioMed Res Int 2013:22CrossRefGoogle Scholar
  66. Neves BC, Mundy R, Petrovska L, Dougan G, Knutton S, Frankel G (2003) CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71(4):2130–2141PubMedPubMedCentralCrossRefGoogle Scholar
  67. Njoroge JW, Gruber C, Sperandio V (2013) The interacting Cra and KdpE regulators are involved in the expression of multiple virulence factors in enterohemorrhagic Escherichia coli. J Bacteriol 195(11):2499–2508PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nougayrede JP, Fernandes PJ, Donnenberg MS (2003) Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5(6):359–372PubMedCrossRefGoogle Scholar
  69. Oberhettinger P, Leo JC, Linke D, Autenrieth IB, Schutz MS (2015) The inverse autotransporter intimin exports its passenger domain via a hairpin intermediate. J Biol Chem 290(3):1837–1849PubMedCrossRefGoogle Scholar
  70. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307(5710):727–731PubMedCrossRefGoogle Scholar
  71. Parsot C (2009) Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol 12(1):110–116PubMedCrossRefGoogle Scholar
  72. Paton AW, Srimanote P, Woodrow MC, Paton JC (2001) Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun 69(11):6999–7009PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, Lung TW, Mansell A, Riedmaier P, Oates CV, Zaid A, Muhlen S, Crepin VF, Marches O, Ang CS, Williamson NA, O’Reilly LA, Bankovacki A, Nachbur U, Infusini G, Webb AI, Silke J, Strasser A, Frankel G, Hartland EL (2013) A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501(7466):247–251PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pohlner J, Halter R, Beyreuther K, Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325(6103):458–462PubMedCrossRefGoogle Scholar
  75. Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A (2016) Type III secretion: building and operating a remarkable nanomachine. Trends Biochem Sci 41(2):175–189PubMedCrossRefGoogle Scholar
  76. Quitard S, Dean P, Maresca M, Kenny B (2006) The enteropathogenic Escherichia coli EspF effector molecule inhibits PI-3 kinase-mediated uptake independently of mitochondrial targeting. Cell Microbiol 8(6):972–981PubMedCrossRefGoogle Scholar
  77. Radics J, Konigsmaier L, Marlovits TC (2014) Structure of a pathogenic type 3 secretion system in action. Nat Struct Mol Biol 21(1):82–87PubMedCrossRefGoogle Scholar
  78. Reichow SL, Korotkov KV, Hol WG, Gonen T (2010) Structure of the cholera toxin secretion channel in its closed state. Nat Struct Mol Biol 17(10):1226–1232PubMedPubMedCentralCrossRefGoogle Scholar
  79. Robinson KS, Mousnier A, Hemrajani C, Fairweather N, Berger CN, Frankel G (2010) The enteropathogenic Escherichia coli effector NleH inhibits apoptosis induced by Clostridium difficile toxin B. Microbiology 156(Pt 6):1815–1823PubMedPubMedCentralCrossRefGoogle Scholar
  80. Roggenkamp A, Ackermann N, Jacobi CA, Truelzsch K, Hoffmann H, Heesemann J (2003) Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J Bacteriol 185(13):3735–3744PubMedPubMedCentralCrossRefGoogle Scholar
  81. Roman-Hernandez G, Peterson JH, Bernstein HD (2014) Reconstitution of bacterial autotransporter assembly using purified components. Elife 3, e04234PubMedPubMedCentralCrossRefGoogle Scholar
  82. Romero S, Grompone G, Carayol N, Mounier J, Guadagnini S, Prevost MC, Sansonetti PJ, Van Nhieu GT (2011) ATP-mediated Erk1/2 activation stimulates bacterial capture by filopodia, which precedes Shigella invasion of epithelial cells. Cell Host Microbe 9(6):508–519PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rosenshine I, Ruschkowski S, Finlay BB (1996) Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Infect Immun 64(3):966–973PubMedPubMedCentralGoogle Scholar
  84. Rudel T, Kepp O, Kozjak-Pavlovic V (2010) Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat Rev Microbiol 8(10):693–705PubMedCrossRefGoogle Scholar
  85. Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4(1):57–66PubMedCrossRefGoogle Scholar
  86. Ruiz-Perez F, Nataro JP (2014) Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol Life Sci 71(5):745–770PubMedCrossRefGoogle Scholar
  87. Ruiz-Perez F, Henderson IR, Nataro JP (2010) Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein. Gut Microbes 1(5):339–344PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ruiz-Perez F, Wahid R, Faherty CS, Kolappaswamy K, Rodriguez L, Santiago A, Murphy E, Cross A, Sztein MB, Nataro JP (2011) Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci U S A 108(31):12881–12886PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sahl JW, Steinsland H, Redman JC, Angiuoli SV, Nataro JP, Sommerfelt H, Rasko DA (2011) A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovar-specific conservation. Infect Immun 79(2):950–960PubMedCrossRefGoogle Scholar
  90. Salacha R, Kovacic F, Brochier-Armanet C, Wilhelm S, Tommassen J, Filloux A, Voulhoux R, Bleves S (2010) The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environ Microbiol 12(6):1498–1512PubMedGoogle Scholar
  91. Samba-Louaka A, Nougayrede JP, Watrin C, Oswald E, Taieb F (2009) The enteropathogenic Escherichia coli effector Cif induces delayed apoptosis in epithelial cells. Infect Immun 77(12):5471–5477PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sanada T, Kim M, Mimuro H, Suzuki M, Ogawa M, Oyama A, Ashida H, Kobayashi T, Koyama T, Nagai S, Shibata Y, Gohda J, Inoue J, Mizushima T, Sasakawa C (2012) The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483(7391):623–626PubMedCrossRefGoogle Scholar
  93. Sanchez-Pulido L, Devos D, Genevrois S, Vicente M, Valencia A (2003) POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem Sci 28(10):523–526PubMedCrossRefGoogle Scholar
  94. Sanchez-Villamil J, Navarro-Garcia F (2015) Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol 10(6):1009–1033PubMedCrossRefGoogle Scholar
  95. Schmidt MA (2010) LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol 12(11):1544–1552PubMedCrossRefGoogle Scholar
  96. Shen S, Mascarenhas M, Morgan R, Rahn K, Karmali MA (2005) Identification of four fimbria-encoding genomic islands that are highly specific for verocytotoxin-producing Escherichia coli serotype O157 strains. J Clin Microbiol 43(8):3840–3850PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353PubMedPubMedCentralCrossRefGoogle Scholar
  98. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tapia-Pastrana G, Chavez-Duenas L, Lanz-Mendoza H, Teter K, Navarro-Garcia F (2012) VirK is a periplasmic protein required for efficient secretion of plasmid-encoded toxin from enteroaggregative Escherichia coli. Infect Immun 80(7):2276–2285PubMedPubMedCentralCrossRefGoogle Scholar
  100. Totsika M, Wells TJ, Beloin C, Valle J, Allsopp LP, King NP, Ghigo JM, Schembri MA (2012) Molecular characterization of the EhaG and UpaG trimeric autotransporter proteins from pathogenic Escherichia coli. Appl Environ Microbiol 78(7):2179–2189PubMedPubMedCentralCrossRefGoogle Scholar
  101. Uhlen P, Laestadius A, Jahnukainen T, Soderblom T, Backhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A (2000) Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405(6787):694–697PubMedCrossRefGoogle Scholar
  102. Ulrich T, Oberhettinger P, Schutz M, Holzer K, Ramms AS, Linke D, Autenrieth IB, Rapaport D (2014) Evolutionary conservation in biogenesis of beta-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein. J Biol Chem 289(43):29457–29470PubMedPubMedCentralCrossRefGoogle Scholar
  103. Valle J, Mabbett AN, Ulett GC, Toledo-Arana A, Wecker K, Totsika M, Schembri MA, Ghigo JM, Beloin C (2008) UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol 190(12):4147–4161PubMedPubMedCentralCrossRefGoogle Scholar
  104. Viswanathan VK, Lukic S, Koutsouris A, Miao R, Muza MM, Hecht G (2004) Cytokeratin 18 interacts with the enteropathogenic Escherichia coli secreted protein F (EspF) and is redistributed after infection. Cell Microbiol 6(10):987–997PubMedCrossRefGoogle Scholar
  105. Weiner JH, Li L (2008) Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. Biochim Biophys Acta 1778(9):1698–1713PubMedCrossRefGoogle Scholar
  106. Weisswange I, Newsome TP, Schleich S, Way M (2009) The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458(7234):87–91PubMedCrossRefGoogle Scholar
  107. Yang K, Meng J, Huang YC, Ye LH, Li GJ, Huang J, Chen HM (2014) The role of the QseC quorum-sensing sensor kinase in epinephrine-enhanced motility and biofilm formation by Escherichia coli. Cell Biochem Biophys 70(1):391–398PubMedCrossRefGoogle Scholar
  108. Yao Q, Lu Q, Wan X, Song F, Xu Y, Hu M, Zamyatina A, Liu X, Huang N, Zhu P, Shao F (2014) A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family. Elife 3Google Scholar
  109. Zhou Y, Tao J, Yu H, Ni J, Zeng L, Teng Q, Kim KS, Zhao GP, Guo X, Yao Y (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun 80(3):1243–1251PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zoued A, Durand E, Bebeacua C, Brunet YR, Douzi B, Cambillau C, Cascales E, Journet L (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288:27031–27041PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, Flaugnatti N, Legrand P, Journet L, Fronzes R, Mignot T, Cambillau C, Cascales E (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531(7592):59–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernando Navarro-Garcia
    • 1
    Email author
  • Fernando Ruiz-Perez
    • 2
  • Mariano Larzábal
    • 3
  • Angel Cataldi
    • 3
  1. 1.Department of Cell BiologyCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)México DFMexico
  2. 2.Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA)Buenos AiresArgentina

Personalised recommendations