Skip to main content

Soft Tissue Finite Element Modeling and Calibration of the Material Properties in the Context of Computer-Assisted Medical Interventions

  • Chapter
  • First Online:
Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 573))

Abstract

This chapter aims at illustrating how patient-specific models of human organs and soft tissues can be implemented into FE packages. First is addressed the question of the generation of patient-specific FE models compatible with the clinical constraints. Then is discussed the calibration of the material properties, with choices that should be done between calibrations based on ex vivo or in vivo tissues loadings. The example of computer-assisted maxillofacial surgery is addressed and results based on patients’ data are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter, M., Mossaz, C., De Tonnac, N., Jaquinet, A., Laurent, F., & Goudot, P. (2002). Chirurgie correctice des malformations ou “dysmorphies” maxillomandibulaires “avant d’agir”. Encycl Méd Chir.

    Google Scholar 

  2. Delingette, H., Subsol, G., Cotin, S., & Pignon, J. (1994). Craniofacial surgery simulation testbed. In Visualization in Biomedical Computing 1994 (pp. 607–618). International Society for Optics and Photonics.

    Google Scholar 

  3. Waters, Keith. (1996). Synthetic muscular contraction on facial tissue derived from computerized tomography data. Computer integrated surgery-technology and clinical applications. Cambridge, London: MIT Press.

    Google Scholar 

  4. Keeve, E., Girod, S., & Girod, B. (1996). Computer-aided craniofacial surgery. In Proceedings of Computer Assisted Radiology CAR 96 (pp. 757–762).

    Google Scholar 

  5. Teschner, M. (2001). Direct computation of soft-tissue deformation in craniofacial surgery simulation. Shaker Verlag.

    Google Scholar 

  6. Barre, S., Fernandez-Maloigne, C., Paume, P., & Subrenat, G. (2000). Simulating facial surgery. In Electronic imaging (pp. 334–345). International Society for Optics and Photonics.

    Google Scholar 

  7. Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., & Parish, Y. I. H. (1996). Simulating facial surgery using finite element models. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (pp. 421–428). ACM.

    Google Scholar 

  8. Keeve, E., Girod, S., Kikinis, R., & Girod, B. (1998). Deformable modeling of facial tissue for craniofacial surgery simulation. Computer Aided Surgery, 3(5), 228–238.

    Article  Google Scholar 

  9. Zachow, S., Gladiline, E., Hege, H. C., & Deuflhard, P. (2000). Finite-element simulation of soft tissue deformation. In Proceedings of CARS (pp. 23–28). Citeseer.

    Google Scholar 

  10. Chabanas, M., Luboz, V., & Payan, Y. (2003). Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis, 7(2), 131–151.

    Article  Google Scholar 

  11. Mollemans, W., Schutyser, F., Nadjmi, N., Maes, F., & Suetens, P. (2007). Predicting soft tissue deformations for a maxillofacial surgery planning system: From computational strategies to a complete clinical validation. Medical Image Analysis, 11(3), 282–301.

    Article  Google Scholar 

  12. Rouvière, H., & Delmas, A. (2002). Anatomie humaine: Descriptive, topographique et fonctionnelle. Tête et cou, vol. 1. Elsevier Masson.

    Google Scholar 

  13. Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2010). Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation. Computer Methods in Biomechanics and Biomedical Engineering, 13(4), 469–482.

    Article  Google Scholar 

  14. Chabanas, M. (2002). Modélisation des tissus mous de la face pour la chirurgie orthognatique assistée par ordinateur. Ph.D. thesis, Université Joseph-Fourier-Grenoble I.

    Google Scholar 

  15. Couteau, B., Payan, Y., & Lavallée, S. (2000). The mesh-matching algorithm: An automatic 3D mesh generator for finite element structures. Journal of Biomechanics, 33(8), 1005–1009.

    Article  Google Scholar 

  16. Bucki, M., Lobos, C., & Payan, Y. (2010). A fast and robust patient specific finite element mesh registration technique: Application to 60 clinical cases. Medical Image Analysis, 14(3), 303–317.

    Article  Google Scholar 

  17. Gérard, J.-M., Ohayon, J., Luboz, V., Perrier, P., & Payan, Y. (2005). Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique: Application to the biomechanics of speech production. Medical Engineering & Physics, 27(10), 884–892.

    Article  Google Scholar 

  18. Kerdok, A. E., Ottensmeyer, M. P., & Howe, R. D. (2006). Effects of perfusion on the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12), 2221–2231.

    Article  Google Scholar 

  19. Ottensmeyer, M. P. (2001). Minimally invasive instrument for in vivo measurement of solid organ mechanical impedance. Ph.D. thesis, Massachusetts Institute of Technology.

    Google Scholar 

  20. Gefen, A., & Margulies, S. S. (2004). Are in vivo and in situ brain tissues mechanically similar? Journal of Biomechanics, 37(9), 1339–1352.

    Article  Google Scholar 

  21. Grahame, R., & Holt, P. J. L. (1969). The influence of ageing on the in vivo elasticity of human skin. Gerontology, 15(2–3), 121–139.

    Article  Google Scholar 

  22. Kauer, M., Vuskovic, V., Dual, J., Székely, G., & Bajka, M. (2002). Inverse finite element characterization of soft tissues. Medical Image Analysis, 6(3), 275–287.

    Article  MATH  Google Scholar 

  23. Diridollou, S., Patat, F., Gens, F., Vaillant, L., Black, D., Lagarde, J. M., et al. (2000). In vivo model of the mechanical properties of the human skin under suction. Skin Research and technology, 6(4), 214–221.

    Article  Google Scholar 

  24. Carter, F. J., Frank, T. G., Davies, P. J., McLean, D., & Cuschieri, A. (2001). Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 5(4), 231–236.

    Article  Google Scholar 

  25. Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221–232.

    Article  Google Scholar 

  26. Jemec, G. B. E., Selvaag, E., Ågren, M., & Wulf, H. C. (2001). Measurement of the mechanical properties of skin with ballistometer and suction cup. Skin Research and Technology, 7(2), 122–126.

    Article  Google Scholar 

  27. Chen, E. J., Novakofski, J., Jenkins, W. K., & O’Brien, W. (1996). Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(1):191–194.

    Google Scholar 

  28. Gennisson, J.-L., Baldeweck, T., Tanter, M., Catheline, S., Fink, M., Sandrin, L., et al. (2004). Assessment of elastic parameters of human skin using dynamic elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(8), 980–989.

    Article  Google Scholar 

  29. Schiavone, P., Promayon, E., & Payan, Y. (2010). LASTIC: A light aspiration device for in vivo soft tissue characterization. In Biomedical simulation (pp. 1–10). Springer.

    Google Scholar 

  30. Luboz, V., Promayon, E., & Payan, Y. (2014). Linear elastic properties of the facial soft tissues using an aspiration device: Towards patient specific characterization. Annals of Biomedical Engineering, 42(11), 2369–2378.

    Article  Google Scholar 

  31. Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2011). Shaping by stiffening: A modeling study for lips. Motor Control, 15(1), 141–168.

    Article  Google Scholar 

  32. Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2011). A 3D finite element muscle model and its application in driving speech articulators. In 23rd Congress of the International Society of Biomechanics (ISB2011), Paper–ID.

    Google Scholar 

  33. Stavness, I., Nazari, M. A., Perrier, P., Demolin, D., & Payan, Y. (2013). A biomechanical modeling study of the effects of the orbicularis oris muscle and jaw posture on lip shape. Journal of Speech, Language, and Hearing Research, 56(3), 878–890.

    Article  Google Scholar 

  34. Chabanas, M., Payan, Y., Marécaux, C., Swider, P., & Boutault, F. (2004). Comparison of linear and non-linear soft tissue models with post-operative ct scan in maxillofacial surgery. In Medical Simulation (pp. 19–27). Springer.

    Google Scholar 

  35. Wittek, A., Hawkins, T., & Miller, K. (2009). On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomechanics and Modeling in Mechanobiology, 8(1), 77–84.

    Article  Google Scholar 

Download references

Acknowledgments

The author of this chapter is grateful to the important and valuable input of scientific colleagues and clinicians who participated to the studies cited in this chapter. He would like to thank: Georges Bettega, Franck Boutault, Marek Bucki, Matthieu Chabanas, Jean-Michel Gérard, Vincent Luboz, Christophe Marécaux, Mohammad Nazari, Jacques Ohayon, Pascal Perrier, Emmanuel Promayon and Patrick Schiavone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohan Payan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Payan, Y. (2017). Soft Tissue Finite Element Modeling and Calibration of the Material Properties in the Context of Computer-Assisted Medical Interventions. In: Avril, S., Evans, S. (eds) Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics. CISM International Centre for Mechanical Sciences, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-45071-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45071-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45070-4

  • Online ISBN: 978-3-319-45071-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics