Mechanical Behaviour of Skin: The Struggle for the Right Testing Method

  • Cees OomensEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 573)


This chapter describes the main features of standard tests for a mechanical characterisation of biological materials, like uniaxial, biaxial and shear tests. After that, the inverse, mixed experimental/numerical methods will be introduced as a tool to create more freedom in the design of experiments and to make the transition from ex vivo testing to in vivo testing possible. A short introduction to the algorithms that can be used to minimise the difference between the experimental results and the numerical results will be discussed, followed by two practical examples applied to skin. The chapter finishes with a comparison between the advantages and disadvantages of in vivo and ex vivo testing.


Constitutive Equation Constitutive Model Inverse Method Inverse Analysis Magnetic Resonance Elastography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Eilaghi, A., Flanagan, J. G., Brodland, G. W., & Ross Ethier, C. (2009). Strain uniformity in biaxial specimens is highly sensitive to attachment details. Journal of Biomechanical Engineering, 131.Google Scholar
  2. 2.
    Ward, I. M., & Hadley, D. W. (1993) Mechanical properties of solid polymers. Wiley.Google Scholar
  3. 3.
    Hendriks, M. A. N. (1991). Identification of the mechanical behaviour of solid materials. Ph.D. thesis, Eindhoven University of Technology.Google Scholar
  4. 4.
    Meuwissen, M. H. H. (1998). An inverse method for the mechanical characterization of metals. Ph.D. thesis, Eindhoven University of Technology.Google Scholar
  5. 5.
    Beck, J. V. & Arnold, K. J. (1977). Parameter estimation in engineering and science. Wiley.Google Scholar
  6. 6.
    Bard, Y. (1974). Nonlinear parameter estimation. Academic Press Inc.Google Scholar
  7. 7.
    Press, W. H., Flannery, B. P., Teukoslky, S. A., & Vetterling, W. T. (1986). Numerical recipes: The art of scientific computing. Cambridge University Press.Google Scholar
  8. 8.
    Norton, J. P. (1986). An introduction to identification. Academic Press.Google Scholar
  9. 9.
    Hendriks, F. M., Brokken, D. V., Van Eemeren, J. T. W. M., Oomens, C. W. J., Baaijens, F. P. T., & Horsten, J. B. A. M. (2003). A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Research and Technology, 9(3), 274–283.CrossRefGoogle Scholar
  10. 10.
    Meijer, R., Douven, L. F. A., & Oomens, C. W. J. (1999). Characterisation of anisotropic and non-linear behaviour in human skin in-vivo. CMBBE, 1, 13–27.Google Scholar
  11. 11.
    Hendriks, F. M., Brokken, D., Oomens, C. W. J., & Baaijens, F. P. T. (2004). Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography. Skin Res Technol, 4, 231–241.CrossRefGoogle Scholar
  12. 12.
    Lanir, Y. (1983). Constitutive equations for fibrous connective tissues. Journal of Biomechanics, 16(1), 1–12.CrossRefGoogle Scholar
  13. 13.
    Diridollou, S., Patat, F., Gens, F., Vaillant, L., Black, D., Lagarde, J., et al. (1998). An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound in Medicine and Biology, 2, 215–224.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2017

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations