Damage in Vascular Tissues and Its Modeling

  • T. Christian GasserEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 573)


The present chapter reviews vessel wall histology and summarizes relevant continuum mechanical concepts to study mechanics-induced tissue damage. As long as the accumulated damage does not trigger strain localizations, the standard nonpolar continuum mechanical framework is applicable. As an example, a damage model for collagenous tissue is discussed and used to predict collagen damage in the aneurysm wall at supra-physiologic loading. The physical meaning of model parameters allow their straight forward identification from independent mechanical and histological experimental data. In contrast, if damage accumulates until the material’s stiffness looses its strong ellipticity, more advanced continuum mechanical approaches are required. Specifically, modeling vascular failure by a fracture process zone is discussed, such that initialization and coalescence of micro-defects is mechanically represented by a phenomenological cohesive traction separation law. Failure of ventricular tissue due to deep penetration illustrates the applicability of the model. Besides appropriate continuum mechanical approaches, laboratory experiments that are sensitive to constitutive model parameters and ensure controlled failure propagation are crucial for a robust parameter identification of failure models.


Collagen Fiber Collagen Fibril Cohesive Zone Fracture Process Zone Cohesive Traction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author of this chapter would like to thank Andrii Grytsan, KTH Royal Institute of Technology, Stockholm for the valuable feed-back on the manuscript.


  1. 1.
    Kachanov, L. (2013). Introduction to continuum damage mechanics (vol. 10). Springer Science & Business Media.Google Scholar
  2. 2.
    Viano, D. C., King, A. I., Melvin, J. W., & Weber, K. (1989). Injury biomechanics research: An essential element in the prevention of trauma. Journal of Biomechanics, 22(5), 403–417.CrossRefGoogle Scholar
  3. 3.
    Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium.Google Scholar
  4. 4.
    Bigoni, D., & Hueckel, T. (1991). Uniqueness and localization—I. Associative and non-associative elastoplasticity. International Journal of Solids and Structures, 28(2), 197–213.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fu, Y. B., & Ogden, R. W. (2001). Nonlinear elasticity: Theory and applications (vol. 283). Cambridge University Press.Google Scholar
  6. 6.
    Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: Solid mechanics (vol. 2). Butterworth-heinemann.Google Scholar
  7. 7.
    Bažant, Z. P. (2002). Concrete fracture models: Testing and practice. Engineering Fracture Mechanics, 69(2), 165–205.CrossRefGoogle Scholar
  8. 8.
    Clark, J. M., & Glagov, S. (1985). Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis, Thrombosis, and Vascular Biology, 5(1), 19–34.CrossRefGoogle Scholar
  9. 9.
    Carey, D. J. (1991). Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annual Review of Physiology, 53(1), 161–177.CrossRefGoogle Scholar
  10. 10.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D., et al. (1995). Molecular biology of the cell. Trends in Biochemical Sciences, 20(5), 210–210.CrossRefGoogle Scholar
  11. 11.
    Humphrey, J. D. (1999). Remodeling of a collagenous tissue at fixed lengths. Journal of Biomechanical Engineering, 121(6), 591–597.CrossRefGoogle Scholar
  12. 12.
    Nissen, R., Cardinale, G. J., & Udenfriend, S. (1978). Increased turnover of arterial collagen in hypertensive rats. Proceedings of the National Academy of Sciences, 75(1), 451–453.CrossRefGoogle Scholar
  13. 13.
    Hulmes, D. J. S. (2008). Collagen diversity, synthesis and assembly. In P. Fratzl (Ed.), Collagen: Structure and mechanics (pp. 15–47). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  14. 14.
    Roach, M. R., & Burton, A. C. (1957). The reason for the shape of the distensibility curves of arteries. Canadian Journal of Biochemistry and Physiology, 35(8), 681–690.CrossRefGoogle Scholar
  15. 15.
    Bergel, D. H. (1961). The static elastic properties of the arterial wall. The Journal of Physiology, 156(3), 445.CrossRefGoogle Scholar
  16. 16.
    Langewouters, G. J., Wesseling, K. H., & Goedhard, W. J. A. (1984). The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. Journal of Biomechanics, 17(6), 425–435.CrossRefGoogle Scholar
  17. 17.
    Sokolis, D. P. (2007). Passive mechanical properties and structure of the aorta: Segmental analysis. Acta Physiologica, 190(4), 277–289.CrossRefGoogle Scholar
  18. 18.
    Fung, Y.-C. (2013). Biomechanics: Mechanical properties of living tissues. Springer Science & Business Media.Google Scholar
  19. 19.
    Humphrey, J. D. (2013). Cardiovascular solid mechanics: Cells, tissues, and organs. Springer Science & Business Media.Google Scholar
  20. 20.
    Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3(6), 15–35.CrossRefGoogle Scholar
  21. 21.
    Vidal, B. D. C., Mello, M. L. S., & Pimentel, É. R. (1982). Polarization microscopy and microspectrophotometry of sirius red, picrosirius and chlorantine fast red aggregates and of their complexes with collagen. The Histochemical Journal, 14(6), 857–878.Google Scholar
  22. 22.
    Lindeman, J. H. N., Ashcroft, B. A., Beenakker, J. W. M., Koekkoek, N. B. R., Prins, F. A., Tielemans, J. F., et al. (2010). Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in marfan syndrome. Proceedings of the National Academy of Sciences, 107(2), 862–865.CrossRefGoogle Scholar
  23. 23.
    Weber, K. T., Pick, R., Silver, M. A., Moe, G. W., Janicki, J. S., Zucker, I. H., et al. (1990). Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation, 82(4), 1387–1401.CrossRefGoogle Scholar
  24. 24.
    Canham, P. B., Finlay, H. M., Dixon, J. G., Boughner, D. R., & Chen, A. (1989). Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovascular Research, 23(11), 973–982.CrossRefGoogle Scholar
  25. 25.
    Canham, P. B., & Finlay, H. M. (2004). Morphometry of medial gaps of human brain artery branches. Stroke, 35(5), 1153–1157.CrossRefGoogle Scholar
  26. 26.
    Gasser, T. C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., & Roy, J. (2012). Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomaterialia, 8(8), 3091–3103.CrossRefGoogle Scholar
  27. 27.
    Diamant, J., Keller, A., Baer, E., Litt, M., & Arridge, R. G. C. (1972). Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proceedings of the Royal Society of London B: Biological Sciences, 180(1060), 293–315.CrossRefGoogle Scholar
  28. 28.
    Gathercole, L. J., Keller, A., & Shah, J. S. (1974). The periodic wave pattern in native tendon collagen: Correlation of polarizing with scanning electron microscopy. Journal of Microscopy, 102(1), 95–105.CrossRefGoogle Scholar
  29. 29.
    Bingham, C. (1974). An antipodally symmetric distribution on the sphere. The Annals of Statistics, 1201–1225.Google Scholar
  30. 30.
    Scott, J. E. (2003). Elasticity in extracellular matrix "shape modules" of tendon, cartilage, etc. a sliding proteoglycan-filament model. The Journal of Physiology, 553(2), 335–343.CrossRefGoogle Scholar
  31. 31.
    Scott, J. E. (2008). Cartilage is held together by elastic glycan strings. Physiological and pathological implications. Biorheology, 45(3–4), 209–217.Google Scholar
  32. 32.
    Haverkamp, R. G., Williams, M. A. K., & Scott, J. E. (2005). Stretching single molecules of connective tissue glycans to characterize their shape-maintaining elasticity. Biomacromolecules, 6(3), 1816–1818.CrossRefGoogle Scholar
  33. 33.
    Liao, J., & Vesely, I. (2007). Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordae tendineae. Journal of Biomechanics, 40(2), 390–398.CrossRefGoogle Scholar
  34. 34.
    Robinson, P. S., Huang, T.-F., Kazam, E., Iozzo, R. V., Birk, D. E., & Soslowsky, L. J. (2005). Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. Journal of Biomechanical Engineering, 127(1), 181–185.CrossRefGoogle Scholar
  35. 35.
    Sasaki, N., & Odajima, S. (1996). Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. Journal of Biomechanics, 29(9), 1131–1136.CrossRefGoogle Scholar
  36. 36.
    Fessel, G., & Snedeker, J. G. (2011). Equivalent stiffness after glycosaminoglycan depletion in tendon—an ultra-structural finite element model and corresponding experiments. Journal of Theoretical Biology, 268(1), 77–83.CrossRefGoogle Scholar
  37. 37.
    Redaelli, A., Vesentini, S., Soncini, M., Vena, P., Mantero, S., & Montevecchi, F. M. (2003). Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons—a computational study from molecular to microstructural level. Journal of Biomechanics, 36(10), 1555–1569.CrossRefGoogle Scholar
  38. 38.
    Vesentini, S., Redaelli, A., & Montevecchi, F. M. (2005). Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. Journal of biomechanics, 38(3), 433–443.Google Scholar
  39. 39.
    Rigozzi, S., Müller, R., & Snedeker, J. G. (2009). Local strain measurement reveals a varied regional dependence of tensile tendon mechanics on glycosaminoglycan content. Journal of Biomechanics, 42(10), 1547–1552.CrossRefGoogle Scholar
  40. 40.
    Rigozzi, S., Müller, R., & Snedeker, J. G. (2010). Collagen fibril morphology and mechanical properties of the Achilles tendon in two inbred mouse strains. Journal of Anatomy, 216(6), 724–731.CrossRefGoogle Scholar
  41. 41.
    Vaishnav, R. N., Young, J. T., Janicki, J. S., & Patel, D. J. (1972). Nonlinear anisotropic elastic properties of the canine aorta. Biophysical Journal, 12(8), 1008.CrossRefGoogle Scholar
  42. 42.
    Fung, Y. C., Fronek, K., & Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. American Journal of Physiology-Heart and Circulatory Physiology, 237(5), H620–H631.Google Scholar
  43. 43.
    Chuong, C. J., & Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering, 105(3), 268–274.CrossRefGoogle Scholar
  44. 44.
    Takamizawa, K., & Hayashi, K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. Journal of Biomechanics, 20(1), 7–17.CrossRefGoogle Scholar
  45. 45.
    Humphrey, J. D., Strumpf, R. K., & Yin, F. C. P. (1990). Determination of a constitutive relation for passive myocardium: I. A new functional form. Journal of Biomechanical Engineering, 112(3), 333–339.CrossRefGoogle Scholar
  46. 46.
    Lanir, Y. (1983). Constitutive equations for fibrous connective tissues. Journal of Biomechanics, 16(1), 1–12.CrossRefGoogle Scholar
  47. 47.
    Wuyts, F. L., Vanhuyse, V. J., Langewouters, G. J., Decraemer, W. F., Raman, E. R., & Buyle, S. (1995). Elastic properties of human aortas in relation to age and atherosclerosis: A structural model. Physics in Medicine and Biology, 40(10), 1577.CrossRefGoogle Scholar
  48. 48.
    Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of elasticity and the physical science of solids, 61(1-3), 1–48.Google Scholar
  49. 49.
    Zulliger, M. A., Fridez, P., Hayashi, K., & Stergiopulos, N. (2004). A strain energy function for arteries accounting for wall composition and structure. Journal of Biomechanics, 37(7), 989–1000.CrossRefGoogle Scholar
  50. 50.
    Christian, T. (2011). Gasser. An irreversible constitutive model for fibrous soft biological tissue: A 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomaterialia, 7(6), 2457–2466.CrossRefGoogle Scholar
  51. 51.
    Peña, J. A., Martínez, M. A., & Peña, E. (2011). A formulation to model the nonlinear viscoelastic properties of the vascular tissue. Acta Mechanica, 217(1–2), 63–74.CrossRefzbMATHGoogle Scholar
  52. 52.
    Gasser, T. C. (2011). A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. Journal of Biomechanics, 44(14), 2544–2550.CrossRefGoogle Scholar
  53. 53.
    Hardin, R. H., & Sloane, N. J. A. (1996). Mclaren’s improved snub cube and other new spherical designs in three dimensions. Discrete & Computational Geometry, 15(4), 429–441.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Gasser, T. C. (2010). Nonlinear elasticity of biological tissues with statistical fibre orientation. Journal of the Royal Society Interface, 7(47), 955–966.CrossRefGoogle Scholar
  55. 55.
    Parry, D. A. D., Barnes, G. R. G., & Craig, A. S. (1978). A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proceedings of the Royal Society of London B: Biological Sciences, 203(1152), 305–321.CrossRefGoogle Scholar
  56. 56.
    Liao, H., & Belkoff, S. M. (1999). A failure model for ligaments. Journal of Biomechanics, 32(2), 183–188.CrossRefGoogle Scholar
  57. 57.
    Emery, J. L., Omens, J. H., & McCulloch, A. D. (1997). Biaxial mechanics of the passively overstretched left ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 272(5), H2299–H2305.Google Scholar
  58. 58.
    Emery, J. L., Omens, J. H., & McCulloch, A. D. (1997). Strain softening in rat left ventricular myocardium. Journal of Biomechanical Engineering, 119(1), 6–12.CrossRefGoogle Scholar
  59. 59.
    Oktay, H. S., Kang, T., Humphrey, J. D., & Bishop, G. G. (1991). Changes in the mechanical behavior of arteries following balloon angioplasty. In ASME Biomechanics Symposium AMD (120).Google Scholar
  60. 60.
    Ridge, M. D., & Wright, V. (1966). Mechanical properties of skin: A bioengineering study of skin structure. Journal of Applied Physiology, 21(5), 1602–1606.Google Scholar
  61. 61.
    Abrahams, M. (1967). Mechanical behaviour of tendon in vitro. A preliminary report. Medical and Biological Engineering, 5, 433–443.CrossRefGoogle Scholar
  62. 62.
    Lanir, Y., & Sverdlik, A. (2002). Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. Journal of Biomechanical Engineering, 124(1), 78–84.CrossRefGoogle Scholar
  63. 63.
    Salunke, N. V., & Topoleski, L. D. (1996). Biomechanics of atherosclerotic plaque. Critical Reviews in Biomedical Engineering, 25(3), 243–285.Google Scholar
  64. 64.
    Hokanson, J., & Yazdani, S. (1997). A constitutive model of the artery with damage. Mechanics Research Communications, 24(2), 151–159.CrossRefzbMATHGoogle Scholar
  65. 65.
    Balzani, D., Schröder, J., & Gross, D. (2006). Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomaterialia, 2(6), 609–618.CrossRefGoogle Scholar
  66. 66.
    Calvo, B., Pena, E., Martins, P., Mascarenhas, T., Doblare, M., Jorge, R. M. N., et al. (2009). On modelling damage process in vaginal tissue. Journal of Biomechanics, 42(5), 642–651.CrossRefGoogle Scholar
  67. 67.
    Tanaka, E., & Yamada, H. (1990). An inelastic constitutive model of blood vessels. Acta Mechanica, 82(1–2), 21–30.CrossRefzbMATHGoogle Scholar
  68. 68.
    Gasser, T. C., & Holzapfel, G. A. (2002). A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Computational Mechanics, 29(4–5), 340–360.CrossRefzbMATHGoogle Scholar
  69. 69.
    Ionescu, I., Guilkey, J. E., Berzins, M., Kirby, R. M., & Weiss, J. A. (2006). Simulation of soft tissue failure using the material point method. Journal of Biomechanical Engineering, 128(6), 917–924.CrossRefGoogle Scholar
  70. 70.
    Gasser, T. C., & Holzapfel, G. A. (2006). Modeling dissection propagation in soft biological tissues. The European Journal of Mechanics—A/Solids, 25, 617–633.MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Gasser, T. C., & Holzapfel, G. A. (2007). Modeling plaque fissuring and dissection during balloon angioplasty intervention. Annals of Biomedical Engineering, 35(5), 711–723.CrossRefGoogle Scholar
  72. 72.
    Ferrara, A., & Pandolfi, A. (2008). Numerical modelling of fracture in human arteries. Computer Methods in Biomechanics and Biomedical Engineering, 11(5), 553–567.CrossRefGoogle Scholar
  73. 73.
    Gasser, T. C. (2011). Numerical simulation of the failure of ventricular tissue due to deep penetration: The impact of constitutive properties. Journal of Biomechanics, 44(1), 45–51.MathSciNetCrossRefGoogle Scholar
  74. 74.
    Quinn, K. P., & Winkelstein, B. A. (2008). Altered collagen fiber kinematics define the onset of localized ligament damage during loading. Journal of Applied Physiology, 105(6), 1881–1888.CrossRefGoogle Scholar
  75. 75.
    Knörzer, E., Folkhard, W., Geercken, W., Boschert, C., Koch, M. H. J., Hilbert, B., et al. (1986). New aspects of the etiology of tendon rupture. Archives of Orthopaedic and Traumatic Surgery, 105(2), 113–120.CrossRefGoogle Scholar
  76. 76.
    Gentleman, E., Lay, A. N., Dickerson, D. A., Nauman, E. A., Livesay, G. A., & Dee, K. C. (2003). Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials, 24(21), 3805–3813.CrossRefGoogle Scholar
  77. 77.
    Silver, F. H., Freeman, J. W., & Seehra, G. P. (2003). Collagen self-assembly and the development of tendon mechanical properties. Journal of Biomechanics, 36(10), 1529–1553.CrossRefGoogle Scholar
  78. 78.
    Lubliner, J. (2008). Plasticity theory. Courier Corporation.Google Scholar
  79. 79.
    Simo, J. C., & Hughes, T. J. R. (2006). Computational inelasticity (vol. 7). Springer Science & Business Media.Google Scholar
  80. 80.
    Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.CrossRefGoogle Scholar
  81. 81.
    Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7, 55–129.MathSciNetCrossRefGoogle Scholar
  82. 82.
    Hillerborg, A., Modéer, M., & Petersson, P.-E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773–781.Google Scholar
  83. 83.
    Oliver, J. (1996). Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 1: Fundamentals. International Journal for Numerical Methods in Engineering, 39(21), 3575–3600.CrossRefzbMATHGoogle Scholar
  84. 84.
    Armero, F., & Garikipati, K. (1996). An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. International Journal of Solids and Structures, 33(20), 2863–2885.MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Wells, G. N., & Sluys, L. J. (2001). Three-dimensional embedded discontinuity model for brittle fracture. International Journal of Solids and Structures, 38(5), 897–913.CrossRefzbMATHGoogle Scholar
  86. 86.
    Gasser, T. C., & Holzapfel, G. A. (2003). Necking phenomena of a fiber-reinforced bar modeled by multisurface plasticity. In IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains (pp. 211–220). Springer.Google Scholar
  87. 87.
    Gasser, T. C., & Holzapfel, G. A. (2003). Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Computer Methods in Applied Mechanics and Engineering, 192(47), 5059–5098.MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Ortiz, M., & Pandolfi, A. (1999). Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 44(9), 1267–1282.CrossRefzbMATHGoogle Scholar
  89. 89.
    Coleman, B. D., & Noll, W. (1963). The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13(1), 167–178.MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Ogden, R. W. (1997). Non-linear elastic deformations. Courier Corporation.Google Scholar
  91. 91.
    Gasser, T. C., & Holzapfel, G. A. (2005). Modeling 3d crack propagation in unreinforced concrete using pufem. Computer Methods in Applied Mechanics and Engineering, 194(25), 2859–2896.CrossRefzbMATHGoogle Scholar
  92. 92.
    Spencer, A. J. M. (1984). Constitutive theory for strongly anisotropic solids. In Continuum theory of the mechanics of fibre-reinforced composites (pp. 1–32). Springer.Google Scholar
  93. 93.
    Antman, S. S. (1995). Nonlinear problems of elasticity.Google Scholar
  94. 94.
    Ogden, R. W. (2003). Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In Biomechanics of soft tissue in cardiovascular systems (pp. 65–108). Springer.Google Scholar
  95. 95.
    Auer, M., & Gasser, T. C. (2010). Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Transactions on Medical Imaging, 29(4), 1022–1028.CrossRefGoogle Scholar
  96. 96.
    Forsell, C., Swedenborg, J., Roy, J., & Gasser, T. C. (2013). The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental–numerical approach. Annals of Biomedical Engineering, 41(7), 1554–1566.Google Scholar
  97. 97.
    Forsell, C., Björck, H. M., Eriksson, P., Franco-Cereceda, A., & Gasser, T. C. (2014). Biomechanical properties of the thoracic aneurysmal wall: Differences between bicuspid aortic valve and tricuspid aortic valve patients. The Annals of Thoracic Surgery, 98(1), 65–71.CrossRefGoogle Scholar
  98. 98.
    Simo, J. C., & Taylor, R. L. (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85(3), 273–310.MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Persson, B. N. J., Albohr, O., Heinrich, G., & Ueba, H. (2005). Crack propagation in rubber-like materials. Journal of Physics: Condensed Matter, 17(44), R1071.Google Scholar
  100. 100.
    Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66(5), 754–771.CrossRefGoogle Scholar
  101. 101.
    Raghavan, M. L., & Vorp, D. A. (2000). Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics, 33(4), 475–482.CrossRefGoogle Scholar
  102. 102.
    Gasser, T. C., Auer, M., Labruto, F., Swedenborg, J., & Roy, J. (2010). Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. European Journal of Vascular and Endovascular Surgery, 40(2), 176–185.CrossRefGoogle Scholar
  103. 103.
    Holzapfel, G. A., Gasser, T. C., & Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. European Journal of Mechanics-A/Solids, 21(3), 441–463.Google Scholar
  104. 104.
    Gasser, T. C., Gudmundson, P., & Dohr, G. (2009). Failure mechanisms of ventricular tissue due to deep penetration. Journal of Biomechanics, 42(5), 626–633.CrossRefGoogle Scholar
  105. 105.
    Wriggers, P. (2006). Computational contact mechanics. Springer Science & Business Media.Google Scholar
  106. 106.
    Lanir, Y., Lichtenstein, O., & Imanuel, O. (1996). Optimal design of biaxial tests for structural material characterization of flat tissues. Journal of Biomechanical Engineering, 118(1), 41–47.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2017

Authors and Affiliations

  1. 1.KTH Solid Mechanics, School of Engineering SciencesKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations