Structural Building Blocks of Soft Tissues: Tendons and Heart Valves

  • Himadri S. GuptaEmail author
  • Hazel R. C. Screen
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 573)


Modelling the mechanical behaviour of soft tissues like tendon, ligament, skin and cartilage requires a knowledge of the structural and mechanical properties of the constitutive elements. These tissues have a hierarchical architecture from the molecular to the macroscopic scale, and are composites of different molecular building blocks. Here we first review the structure of the proteins and polysaccharides comprising such tissues. We then consider the structure and mechanical properties of two prototypical soft tissues: tendons and heart valves. An overview of their structure is followed by a description of the known mechanical behaviour of these tissues. Consideration is given to the role of different constituent components in mechanical response, structural anisotropy and testing methods which can probe mechanical deformation at multiple levels.


Aortic Valve Mitral Valve Heart Valve Tricuspid Valve Pulmonary Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vincent, J. F. V. (2012). Structural biomaterials. Princeton University Press.Google Scholar
  2. 2.
    Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53, 1–206.CrossRefGoogle Scholar
  3. 3.
    Wainwright, S. A. (1982). Mechanical design in organisms. Princeton University Press.Google Scholar
  4. 4.
    Vrhovski, B., & Weiss, A. S. (1998). Biochemistry of tropoelastin. European Journal of Biochemistry, 258(1), 1–18.CrossRefGoogle Scholar
  5. 5.
    Yigit, S., Dinjaski, N., & Kaplan, D. L. (2015). Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnology and Bioengineering.Google Scholar
  6. 6.
    Hulmes, D. J. S. (2008). Collagen diversity, synthesis and assembly. In P. Fratzl (Ed.), Collagen: Structure and mechanics (pp. 15–47). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  7. 7.
    Meek, K. M., Chapman, J. A., & Hardcastle, R. A. (1979). The staining pattern of collagen fibrils. Improved correlation with sequence data. Journal of Biological Chemistry, 254(21), 10710–10714.Google Scholar
  8. 8.
    Kadler, K. E., Holmes, D. F., Graham, H., & Starborg, T. (2000). Tip-mediated fusion involving unipolar collagen fibrils accounts for rapid fibril elongation, the occurrence of fibrillar branched networks in skin and the paucity of collagen fibril ends in vertebrates. Matrix Biology, 19(4), 359–365.CrossRefGoogle Scholar
  9. 9.
    Screen, H. R. C., Lee, D. A., Bader, D. L., & Shelton, J. C. (2004). An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218(2), 109–119.Google Scholar
  10. 10.
    Weiner, S., Traub, W., & Wagner, H. D. (1999). Lamellar bone: Structure-function relations. Journal of Structural Biology, 126(3), 241–255.CrossRefGoogle Scholar
  11. 11.
    Green, E. M., Mansfield, J. C., Bell, J. S., & Winlove, C. P. (2014). The structure and micromechanics of elastic tissue. Interface Focus, 4(2), 20130058.CrossRefGoogle Scholar
  12. 12.
    Daamen, W. F., Veerkamp, J. H., Van Hest, J. C. M., & Van Kuppevelt, T. H. (2007). Elastin as a biomaterial for tissue engineering. Biomaterials, 28(30), 4378–4398.CrossRefGoogle Scholar
  13. 13.
    Raabe, D., Sachs, C., & Romano, P. (2005). The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia, 53(15), 4281–4292.CrossRefGoogle Scholar
  14. 14.
    Fabritius, H.-O., Sachs, C., Triguero, P. R., & Raabe, D. (2009). Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster homarus americanus. Advanced Materials, 21(4), 391–400.CrossRefGoogle Scholar
  15. 15.
    Sanchez, C., Arribart, H., & Guille, M. M. G. (2005). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 4(4), 277–288.CrossRefGoogle Scholar
  16. 16.
    Hull, D., Clyne, T. W. (1996). An introduction to composite materials. Cambridge university press.Google Scholar
  17. 17.
    Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 3(3), 72.CrossRefGoogle Scholar
  18. 18.
    Chuong, C. J., & Fung, Y. C. (1986). Residual stress in arteries. In Frontiers in biomechanics (pp. 117–129). Springer.Google Scholar
  19. 19.
    Korhonen, R. K., Laasanen, M. S., Töyräs, J., Lappalainen, R., Helminen, H. J., & Jurvelin, J. S. (2003). Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. Journal of Biomechanics, 36(9), 1373–1379.CrossRefGoogle Scholar
  20. 20.
    Blevins, F. T. (1996). Structure, function, and adaptation of tendon. Current Opinion in Orthopaedics, 7(6), 57–61.CrossRefGoogle Scholar
  21. 21.
    Riley, G. P., Harrall, R. L., Cawston, T. E., Hazleman, B. L., & Mackie, E. J. (1996). Tenascin-C and human tendon degeneration. The American Journal of Pathology, 149(3), 933.Google Scholar
  22. 22.
    Benjamin, M., & Ralphs, J. R. (1997). Tendons and ligaments—an overview. Histology and Histopathology, 12(4), 1135–1144.Google Scholar
  23. 23.
    Smith, R. K. W., Zunino, L., Webbon, P. M., & Heinegård, D. (1997). The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biology, 16(5), 255–271.CrossRefGoogle Scholar
  24. 24.
    Yoon, H. J., & Halper, J. (2005). Tendon proteoglycans: Biochemistry and function. J Musculoskelet Neuronal Interact, 5(1), 22–34.Google Scholar
  25. 25.
    Thorpe, C. T., Birch, H. L., Clegg, P. D., & Screen, H. R. C. (2013). The role of the non-collagenous matrix in tendon function. International Journal of Experimental Pathology, 94(4), 248–259.CrossRefGoogle Scholar
  26. 26.
    Kastelic, J., Galeski, A., & Baer, E. (1978). The multicomposite structure of tendon. Connective Tissue Research, 6(1), 11–23.CrossRefGoogle Scholar
  27. 27.
    Dyer, R. F., & Enna, C. D. (1976). Ultrastructural features of adult human tendon. Cell and Tissue Research, 168(2), 247–259.CrossRefGoogle Scholar
  28. 28.
    Ramachandran, G. N. (1988). Stereochemistry of collagen. International Journal of Peptide and Protein Research, 31(1), 1–16.CrossRefGoogle Scholar
  29. 29.
    Orgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences, 103(24), 9001–9005.CrossRefGoogle Scholar
  30. 30.
    Goh, K. L., Holmes, D. F., Lu, H.-Y., Richardson, S., Kadler, K. E., Purslow, P. P., et al. (2008). Ageing changes in the tensile properties of tendons: Influence of collagen fibril volume fraction. Journal of Biomechanical Engineering, 130(2), 021011.CrossRefGoogle Scholar
  31. 31.
    Scott, J. E. (2003). Elasticity in extracellular matrix “shape modules” of tendon, cartilage, etc. A sliding proteoglycan-filament model. The Journal of Physiology, 553(2), 335–343.CrossRefGoogle Scholar
  32. 32.
    Thorpe, C. T., Riley, G. P., Birch, H. L., Clegg, P. D., & Screen, H. R. C. (2016). Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons. Acta Biomaterialia.Google Scholar
  33. 33.
    Buckwalter, J. A., Einhorn T. A., & Simon, S. R. (2000). Orthopaedic basic science: Biology and biomechanics of the musculoskeletal system (vol. 1). Amer Academy of Orthopaedic.Google Scholar
  34. 34.
    Kastelic, J., Palley, I., & Baer, E. (1980). A structural mechanical model for tendon crimping. Journal of Biomechanics, 13(10), 887–893.CrossRefGoogle Scholar
  35. 35.
    Smith, L., Xia, Y., Galatz, L. M., Genin, G. M., & Thomopoulos, S. (2012). Tissue-engineering strategies for the tendon/ligament-to-bone insertion. Connective Tissue Research, 53(2), 95–105.CrossRefGoogle Scholar
  36. 36.
    Gupta, H. S. (2008). Nanoscale deformation mechanisms in collagen. In P. Fratzl (Ed.), Collagen: Structure and mechanics (pp. 155–173). New York: Springer Science+Business Media.Google Scholar
  37. 37.
    Misof, K., Rapp, G., & Fratzl, P. (1997). A new molecular model for collagen elasticity based on synchrotron x-ray scattering evidence. Biophysical Journal, 72(3), 1376.CrossRefGoogle Scholar
  38. 38.
    Atkinson, T. S., Ewers, B. J., & Haut, R. C. (1999). The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. Journal of Biomechanics, 32(9), 907–914.CrossRefGoogle Scholar
  39. 39.
    Fratzl, P., Misof, K., Zizak, I., Rapp, G., Amenitsch, H., & Bernstorff, S. (1998). Fibrillar structure and mechanical properties of collagen. Journal of Structural Biology, 122(1), 119–122.CrossRefGoogle Scholar
  40. 40.
    Sasaki, N., & Odajima, S. (1996). Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. Journal of Biomechanics, 29(9), 1131–1136.Google Scholar
  41. 41.
    Wang, X. T., & Ker, R. F. (1995). Creep rupture of wallaby tail tendons. Journal of Experimental Biology, 198(3), 831–845.Google Scholar
  42. 42.
    Gupta, H. S., Seto, J., Krauss, S., Boesecke, P., & Screen, H. R. C. (2010). In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. Journal of Structural Biology, 169(2), 183–191.CrossRefGoogle Scholar
  43. 43.
    Sasaki, N., & Odajima, S. (1996). Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. Journal of Biomechanics, 29(5), 655–658.Google Scholar
  44. 44.
    Masic, A., Bertinetti, L., Schuetz, R., Chang, S.-W., Metzger, T. H., Buehler, M. J., et al. (2015). Osmotic pressure induced tensile forces in tendon collagen. Nature Communications, 6.Google Scholar
  45. 45.
    Mosler, E., Folkhard, W., Knörzer, E., Nemetschek-Gansler, H., Nemetschek, T., & Koch, M. H. J. (1985). Stress-induced molecular rearrangement in tendon collagen. Journal of Molecular Biology, 182(4), 589–596.CrossRefGoogle Scholar
  46. 46.
    Sasaki, N., Shukunami, N., Matsushima, N., & Izumi, Y. (1999). Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. Journal of Biomechanics, 32(3), 285–292.CrossRefGoogle Scholar
  47. 47.
    Eppell, S. J., Smith, B. N., Kahn, H., & Ballarini, R. (2006). Nano measurements with micro-devices: Mechanical properties of hydrated collagen fibrils. Journal of the Royal Society Interface, 3(6), 117–121.CrossRefGoogle Scholar
  48. 48.
    Buehler, M. J. (2006). Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences, 103(33), 12285–12290.CrossRefGoogle Scholar
  49. 49.
    Scree, H. R. C., Lee, D. A., Bader, D. L., & Shelton, J. C. (2003). Development of a technique to determine strains in tendons using the cell nuclei. Biorheology, 40, 361–368.Google Scholar
  50. 50.
    Screen, H. R. C., Bader, D. L., Lee, D. A., & Shelton, J. C. (2004). Local strain measurement within tendon. Strain, 40(4), 157–163.Google Scholar
  51. 51.
    Szczesny, S. E., Caplan, J. L., Pedersen, P., & Elliott, D. M. (2015). Quantification of interfibrillar shear stress in aligned soft collagenous tissues via notch tension testing. Scientific Reports, 5.Google Scholar
  52. 52.
    Knörzer, E., Folkhard, W., Geercken, W., Boschert, C., Koch, M. H. J., Hilbert, B., et al. (1986). New aspects of the etiology of tendon rupture. Archives of Orthopaedic and Traumatic Surgery, 105(2), 113–120.CrossRefGoogle Scholar
  53. 53.
    Puxkandl, R., Zizak, I., Paris, O., Keckes, J., Tesch, W., Bernstorff, S., et al. (2002). Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1418), 191–197.CrossRefGoogle Scholar
  54. 54.
    Thorpe, C. T., Godinho, M. S. C., Riley, G. P., Birch, H. L., Clegg, P. D., & Screen, H. R. C. (2015). The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons. Journal of the Mechanical Behavior of Biomedical Materials, 52, 85–94.CrossRefGoogle Scholar
  55. 55.
    Screen, H. R. C., Shelton, J. C., Chhaya, V. H., Kayser, M. V., Bader, D. L., & Lee, D. A. (2005). The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Annals of Biomedical Engineering, 33(8), 1090–1099.CrossRefGoogle Scholar
  56. 56.
    Screen, H. R. C., Chhaya, V. H., Greenwald, S. E., Bader, D. L., Lee, D. A., & Shelton, J. C. (2006). The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta Biomaterialia, 2(5), 505–513.CrossRefGoogle Scholar
  57. 57.
    Connizzo, B. K., Sarver, J. J., Lozzo, R. V., Birk, D. E., & Soslowsky, L. J. (2013). Effect of age and proteoglycan deficiency on collagen fiber re-alignment and mechanical properties in mouse supraspinatus tendon. Journal of Biomechanical Engineering, 135(2), 021019.CrossRefGoogle Scholar
  58. 58.
    Legerlotz, K., Riley, G. P., & Screen, H. R. C. (2013). GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery. Acta Biomaterialia, 9(6), 6860–6866.CrossRefGoogle Scholar
  59. 59.
    Dourte, L. A. M., Pathmanathan, L., Jawad, A. F., Lozzo, R. V., Mienaltowski, M. J., Birk, D. E., et al. (2012). Influence of decorin on the mechanical, compositional, and structural properties of the mouse patellar tendon. Journal of Biomechanical Engineering, 134(3), 031005.CrossRefGoogle Scholar
  60. 60.
    Henninger, H. B., Underwood, C. J., Romney, S. J., Davis, G. L., & Weiss, J. A. (2013). Effect of elastin digestion on the quasi-static tensile response of medial collateral ligament. Journal of Orthopaedic Research, 31(8), 1226–1233.CrossRefGoogle Scholar
  61. 61.
    Millesi, H., Reihsner, R., Hamilton, G., Mallinger, R., & Menzel, E. J. (1995). Biomechanical properties of normal tendons, normal palmar aponeuroses, and tissues from patients with dupuytren’s disease subjected to elastase and chondroitinase treatment. Clinical Biomechanics, 10(1), 29–35.CrossRefGoogle Scholar
  62. 62.
    Birch, H. L. (2007). Tendon matrix composition and turnover in relation to functional requirements. International Journal of Experimental Pathology, 88(4), 241–248.CrossRefGoogle Scholar
  63. 63.
    Ker, R. F., Wang, X. T., & Pike, A. V. (2000). Fatigue quality of mammalian tendons. Journal of Experimental Biology, 203(8), 1317–1327.Google Scholar
  64. 64.
    Thorpe, C. T., Udeze, C. P., Birch, H. L., Clegg, P. D., & Screen, H. R. C. (2012) Specialization of tendon mechanical properties results from interfascicular differences. Journal of the Royal Society Interface, p. rsif20120362.Google Scholar
  65. 65.
    Thorpe, C. T., Karunaseelan, K. J., Ng Chieng Hin, J., Riley, G. P., Birch, H. L., Clegg, P. D., et al. (2016). Distribution of proteins within different compartments of tendon varies according to tendon type. Journal of Anatomy.Google Scholar
  66. 66.
    Thorpe, C. T., Klemt, C., Riley, G. P., Birch, H. L., Clegg, P. D., & Screen, H. R. C. (2013). Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return. Acta Biomaterialia, 9(8), 7948–7956.Google Scholar
  67. 67.
    Thorpe, C. T., Riley, G. P., Birch, H. L., Clegg, P. D., & Screen, H. R. C. (2014). Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading. Journal of the Royal Society Interface, 11(92), 20131058.CrossRefGoogle Scholar
  68. 68.
    Grande-Allen, J. K., & Liao, J. (2011). The heterogeneous biomechanics and mechanobiology of the mitral valve: Implications for tissue engineering. Current Cardiology Reports, 13(2), 113–120.CrossRefGoogle Scholar
  69. 69.
    McCarthy, K. P., Ring, L., & Rana, B. S. (2010). Anatomy of the mitral valve: Understanding the mitral valve complex in mitral regurgitation. European Heart Journal-Cardiovascular Imaging, 11(10), i3–i9.Google Scholar
  70. 70.
    Missirlis, Y. F., & Chong, M. (1978). Aortic valve mechanics-part I: Material properties of natural porcine aortic valves. Journal of Bioengineering, 2(3–4), 287–300.Google Scholar
  71. 71.
    Scott, M., & Vesely, I. (1995). Aortic valve cusp microstructure: The role of elastin. The Annals of Thoracic Surgery, 60, S391–S394.CrossRefGoogle Scholar
  72. 72.
    Sacks, M. S. (1999). A method for planar biaxial mechanical testing that includes in-plane shear. Journal of Biomechanical Engineering, 121(5), 551–555.CrossRefGoogle Scholar
  73. 73.
    Merryman, D. W., Huang, H.-Y. S., Schoen, F. J., & Sacks, M. S. (2006). The effects of cellular contraction on aortic valve leaflet flexural stiffness. Journal of Biomechanics, 39(1), 88–96.CrossRefGoogle Scholar
  74. 74.
    Vesely, I. (1997). The role of elastin in aortic valve mechanics. Journal of Biomechanics, 31(2), 115–123.MathSciNetCrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2017

Authors and Affiliations

  1. 1.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations