Skip to main content

Electric Stimulation to Improve Memory Consolidation During Sleep

  • Chapter
  • First Online:
Book cover Cognitive Neuroscience of Memory Consolidation

Abstract

During the last decade the interest in the manipulation of learning and memory by non-invasive techniques in humans has increased dramatically. Many studies focus on sleep as a beneficial or even necessary state for the consolidation of many types of memories. For manipulation methods of transcranial electric stimulation, TMS, deep brain stimulation, cued reactivation, sensory stimulation, especially auditory stimulation have been employed. Techniques closely comparable to the non-invasive human methods have also been developed in rodents. In addition optogenetic tools have enabled the functional causality of very specific pathways to be investigated in a complimentary way. This chapter focuses on effects induced by weak electric stimulation on consolidation during sleep but includes also manipulations aside from weak electric stimulation in a complimentary fashion. As of recent the variability in the efficiency of weak electric stimulation has come into the spotlight. Specifically, the relevance not only of the technical parameters of stimulation, but also of the electrophysiologically defined ‘brain state’ at the time of stimulation, as well as cognitive features of the individual per se have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albouy G, Sterpenich V, Vandewalle G, Darsaud A, Gais S, Rauchs G, Desseilles M, Boly M, Dang-Vu T, Balteau E, Degueldre C, Phillips C, Luxen A, Maquet P (2013) Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PLoS ONE 8:e59490

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali MM, Sellers KK, Frohlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci: Official J Soc Neurosci 33:11262–11275

    Article  Google Scholar 

  • Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14:217–223

    Article  PubMed  Google Scholar 

  • Barham MP, Enticott PG, Conduit R, Lum JA (2016) Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: evidence from a meta-analysis. Neurosci Biobehav Rev 63:65–77

    Article  PubMed  Google Scholar 

  • Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591:1987–2000

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergmann TO, Groppa S, Seeger M, Molle M, Marshall L, Siebner HR (2009) Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation. J Neurophysiol 102:2303–2311

    Article  PubMed  Google Scholar 

  • Berryhill ME, Peterson DJ, Jones KT, Stephens JA (2014) Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol 5:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Binder S, Rawohl J, Born J, Marshall L (2014a) Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci 7:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Binder S, Berg K, Gasca F, Lafon B, Parra LC, Born J, Marshall L (2014b) Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain stimulation 7:508–515

    Article  PubMed  Google Scholar 

  • Boyce R, Glasgow SD, Williams S, Adamantidis A (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science (New York, NY) 352:812–816

    Article  Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science (New York, NY) 313:1626–1628

    Article  Google Scholar 

  • Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain stimulation 2:201–207

    Google Scholar 

  • David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, Renger JJ, Lambert RC, Leresche N, Crunelli V (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci: Official J Soc Neurosci 33:19599–19610

    Article  Google Scholar 

  • de Souza Custodio JC, Martins CW, Lugon MD, Fregni F, Nakamura-Palacios EM (2013) Epidural direct current stimulation over the left medial prefrontal cortex facilitates spatial working memory performance in rats. Brain Stimulation 6:261–269

    Article  PubMed  Google Scholar 

  • Del Felice A, Magalini A, Masiero S (2015) Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool. Brain stimulation 8:567–573

    Article  PubMed  Google Scholar 

  • Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ (2011) Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem 96:452–460

    Article  PubMed  Google Scholar 

  • Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M (2013) Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage 74:266–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Mameli F, Rosa M, Giannicola G, Zago S, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum (London, England) 12:485–492

    Google Scholar 

  • Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37:742–753

    Article  PubMed  Google Scholar 

  • Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Frohlich F (2015) Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog Brain Res 222:41–73

    Article  PubMed  Google Scholar 

  • Frohlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67:129–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Garside P, Arizpe J, Lau CI, Goh C, Walsh V (2015) Cross-hemispheric alternating current stimulation during a nap disrupts slow wave activity and associated memory consolidation. Brain stimulation 8:520–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasca F, Marshall L, Binder S, Schlaefer A, Hofmann UG, Schweikard A (2011) Finite element simulation of transcranial current stimulation in realistic rat head model. Neural Eng 3

    Google Scholar 

  • Greenberg A, Whitten TA, Dickson CT (2016) Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states. NeuroImage 133:189–206

    Article  PubMed  Google Scholar 

  • Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol: CB 24:333–339

    Article  PubMed  Google Scholar 

  • Herrmann CS, Rach S, Neuling T, Struber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Human Neurosci 7:279

    Article  Google Scholar 

  • Jefferys JG (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75:689–723

    PubMed  Google Scholar 

  • Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol: CB 18:1839–1843

    Article  PubMed  Google Scholar 

  • Kim A, Latchoumane C, Lee S, Kim GB, Cheong E, Augustine GJ, Shin HS (2012) Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc Natl Acad Sci USA 109:20673–20678

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirov R, Weiss C, Siebner HR, Born J, Marshall L (2009) Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci USA 106:15460–15465

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuki T, Ohshiro T, Ito S, Ji ZG, Fukazawa Y, Matsuzaka Y, Yawo H, Mushiake H (2013) Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat. Neurosci Res 75:35–45

    Article  PubMed  Google Scholar 

  • Leffa DT, de Souza A, Scarabelot VL, Medeiros LF, de Oliveira C, Grevet EH, Caumo W, de Souza DO, Rohde LA, Torres IL (2016) Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 26:368–377

    Article  PubMed  Google Scholar 

  • Li LM, Uehara K, Hanakawa T (2015) The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 9:181

    PubMed  PubMed Central  Google Scholar 

  • Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 120:1161–1167

    Article  Google Scholar 

  • Lustenberger C, Boyle MR, Sankaraleengam A, Mellin J, Vaughn B, Flavio F (2016) Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor consolidation. Current Biology 26(16): 2127–2136

    Google Scholar 

  • Marshall L, Born J (2011) Brain Stimulation During Sleep. Sleep Med Clin 6:10

    Article  Google Scholar 

  • Marshall L, Binder S (2013) Contribution of transcranial oscillatory stimulation to research on neural networks: an emphasis on hippocampo-neocortical rhythms. Front Human Neurosci 7:614

    Article  Google Scholar 

  • Marshall L, Mölle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci: Official J Soc Neurosci 24:9985–9992

    Article  Google Scholar 

  • Marshall L, Helgadottir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    Article  PubMed  Google Scholar 

  • Marshall L, Kirov R, Brade J, Mölle M, Born J (2011) Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS ONE 6:e16905

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 117:1623–1629

    Article  Google Scholar 

  • Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y, Hirase H (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun 7:11100

    Article  PubMed  PubMed Central  Google Scholar 

  • Monte-Silva K, Kuo MF, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, Nitsche MA (2013) Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain stimulation 6:424–432

    Article  PubMed  Google Scholar 

  • Munz MT, Prehn-Kristensen A, Thielking F, Mölle M, Goder R, Baving L (2015) Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder. Front Cell Neurosci 9:307

    Article  PubMed  PubMed Central  Google Scholar 

  • Nettersheim A, Hallschmid M, Born J, Diekelmann S (2015) The role of sleep in motor sequence consolidation: stabilization rather than enhancement. J Neurosci: Official J Soc Neurosci 35:6696–6702

    Article  Google Scholar 

  • Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS (2012) Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front psychiatry 3:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Niknazar M, Krishnan GP, Bazhenov M, Mednick SC (2015) Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans. PLoS ONE 10:e0144720

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain stimulation 1:206–223

    Article  PubMed  Google Scholar 

  • Nitsche MA, Jakoubkova M, Thirugnanasambandam N, Schmalfuss L, Hullemann S, Sonka K, Paulus W, Trenkwalder C, Happe S (2010) Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. J Neurophysiol 104:2603–2614

    Article  PubMed  Google Scholar 

  • Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. The Journal of neuroscience: the official journal of the Society for Neuroscience 30:11476–11485

    Article  Google Scholar 

  • Pelletier SJ, Cicchetti F (2015) Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 18

    Google Scholar 

  • Pennartz CM, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL (2004) The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. The Journal of neuroscience: the official journal of the Society for Neuroscience 24:6446–6456

    Article  Google Scholar 

  • Pereira de Vasconcelos A, Cassel JC (2015) The nonspecific thalamus: A place in a wedding bed for making memories last? Neurosci Biobehav Rev 54:175–196

    Article  PubMed  Google Scholar 

  • Prehn-Kristensen A, Munz M, Goder R, Wilhelm I, Korr K, Vahl W, Wiesner CD, Baving L (2014) Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls. Brain stimulation 7:793–799

    Article  PubMed  Google Scholar 

  • Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 114:589–595

    Article  Google Scholar 

  • Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain stimulation 2:215–228

    Google Scholar 

  • Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93:681–766

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, de Lecea L (2011) Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci USA 108:13305–13310

    Article  PubMed  PubMed Central  Google Scholar 

  • Savic B, Meier B (2016) How transcranial direct current stimulation can modulate implicit motor sequence learning and consolidation: a brief review. Front Human Neurosci 10:26

    Article  Google Scholar 

  • Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci: Official J Soc Neurosci 29:5202–5206

    Article  Google Scholar 

  • Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, Tracey I (2013) Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J Neurosci: Official J Soc Neurosci 33:11425–11431

    Article  Google Scholar 

  • Struber D, Rach S, Neuling T, Herrmann CS (2015) On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Front Cell Neurosci 9:311

    Article  PubMed  PubMed Central  Google Scholar 

  • Tecchio F, Zappasodi F, Assenza G, Tombini M, Vollaro S, Barbati G, Rossini PM (2010) Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol 104:1134–1140

    Article  PubMed  Google Scholar 

  • Vossen A, Gross J, Thut G (2015) Alpha power increase after transcranial alternating current stimulation at alpha frequency (alpha-tACS) reflects plastic changes rather than entrainment. Brain stimulation 8:499–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A (2007) Transcranial direct current stimulation: a computer-based human model study. NeuroImage 35:1113–1124

    Article  PubMed  Google Scholar 

  • Wagner S, Rampersad SM, Aydin U, Vorwerk J, Oostendorp TF, Neuling T, Herrmann CS, Stegeman DF, Wolters CH (2014) Investigation of tDCS volume conduction effects in a highly realistic head model. J Neural Eng 11:016002

    Article  PubMed  Google Scholar 

  • Weiss SA, Faber DS (2010) Field effects in the CNS play functional roles. Front Neural Circ 4:15

    Google Scholar 

  • Westerberg CE, Florczak SM, Weintraub S, Mesulam MM, Marshall L, Zee PC, Paller KA (2015) Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging 36:2577–2586

    Article  PubMed  PubMed Central  Google Scholar 

  • Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 127:1031–1048

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (TR/SFB 654 and SPP1665), and NIH/NSF/BMBF/CRCNS: US-German Collaboration in Computational Neuroscience (German Ministry of Education and Research BMBF, grant 01GQ1008).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campos-Beltrán, D., Marshall, L. (2017). Electric Stimulation to Improve Memory Consolidation During Sleep. In: Axmacher, N., Rasch, B. (eds) Cognitive Neuroscience of Memory Consolidation. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-45066-7_18

Download citation

Publish with us

Policies and ethics