Advertisement

Electric Stimulation to Improve Memory Consolidation During Sleep

  • Diana Campos-Beltrán
  • Lisa Marshall
Chapter
Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)

Abstract

During the last decade the interest in the manipulation of learning and memory by non-invasive techniques in humans has increased dramatically. Many studies focus on sleep as a beneficial or even necessary state for the consolidation of many types of memories. For manipulation methods of transcranial electric stimulation, TMS, deep brain stimulation, cued reactivation, sensory stimulation, especially auditory stimulation have been employed. Techniques closely comparable to the non-invasive human methods have also been developed in rodents. In addition optogenetic tools have enabled the functional causality of very specific pathways to be investigated in a complimentary way. This chapter focuses on effects induced by weak electric stimulation on consolidation during sleep but includes also manipulations aside from weak electric stimulation in a complimentary fashion. As of recent the variability in the efficiency of weak electric stimulation has come into the spotlight. Specifically, the relevance not only of the technical parameters of stimulation, but also of the electrophysiologically defined ‘brain state’ at the time of stimulation, as well as cognitive features of the individual per se have been addressed.

Keywords

Memory consolidation Sleep Weak brain electric stimulation Oscillatory-tDCS Slow oscillations 

Notes

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (TR/SFB 654 and SPP1665), and NIH/NSF/BMBF/CRCNS: US-German Collaboration in Computational Neuroscience (German Ministry of Education and Research BMBF, grant 01GQ1008).

References

  1. Albouy G, Sterpenich V, Vandewalle G, Darsaud A, Gais S, Rauchs G, Desseilles M, Boly M, Dang-Vu T, Balteau E, Degueldre C, Phillips C, Luxen A, Maquet P (2013) Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PLoS ONE 8:e59490CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ali MM, Sellers KK, Frohlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci: Official J Soc Neurosci 33:11262–11275CrossRefGoogle Scholar
  3. Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14:217–223CrossRefPubMedGoogle Scholar
  4. Barham MP, Enticott PG, Conduit R, Lum JA (2016) Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: evidence from a meta-analysis. Neurosci Biobehav Rev 63:65–77CrossRefPubMedGoogle Scholar
  5. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591:1987–2000CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bergmann TO, Groppa S, Seeger M, Molle M, Marshall L, Siebner HR (2009) Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation. J Neurophysiol 102:2303–2311CrossRefPubMedGoogle Scholar
  7. Berryhill ME, Peterson DJ, Jones KT, Stephens JA (2014) Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol 5:800CrossRefPubMedPubMedCentralGoogle Scholar
  8. Binder S, Rawohl J, Born J, Marshall L (2014a) Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci 7:220CrossRefPubMedPubMedCentralGoogle Scholar
  9. Binder S, Berg K, Gasca F, Lafon B, Parra LC, Born J, Marshall L (2014b) Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain stimulation 7:508–515CrossRefPubMedGoogle Scholar
  10. Boyce R, Glasgow SD, Williams S, Adamantidis A (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science (New York, NY) 352:812–816CrossRefGoogle Scholar
  11. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science (New York, NY) 313:1626–1628CrossRefGoogle Scholar
  12. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain stimulation 2:201–207Google Scholar
  13. David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, Renger JJ, Lambert RC, Leresche N, Crunelli V (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci: Official J Soc Neurosci 33:19599–19610CrossRefGoogle Scholar
  14. de Souza Custodio JC, Martins CW, Lugon MD, Fregni F, Nakamura-Palacios EM (2013) Epidural direct current stimulation over the left medial prefrontal cortex facilitates spatial working memory performance in rats. Brain Stimulation 6:261–269CrossRefPubMedGoogle Scholar
  15. Del Felice A, Magalini A, Masiero S (2015) Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool. Brain stimulation 8:567–573CrossRefPubMedGoogle Scholar
  16. Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ (2011) Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem 96:452–460CrossRefPubMedGoogle Scholar
  17. Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M (2013) Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage 74:266–275CrossRefPubMedPubMedCentralGoogle Scholar
  18. Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Mameli F, Rosa M, Giannicola G, Zago S, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum (London, England) 12:485–492Google Scholar
  20. Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37:742–753CrossRefPubMedGoogle Scholar
  21. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204CrossRefPubMedPubMedCentralGoogle Scholar
  22. Frohlich F (2015) Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog Brain Res 222:41–73CrossRefPubMedGoogle Scholar
  23. Frohlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67:129–143CrossRefPubMedPubMedCentralGoogle Scholar
  24. Garside P, Arizpe J, Lau CI, Goh C, Walsh V (2015) Cross-hemispheric alternating current stimulation during a nap disrupts slow wave activity and associated memory consolidation. Brain stimulation 8:520–527CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gasca F, Marshall L, Binder S, Schlaefer A, Hofmann UG, Schweikard A (2011) Finite element simulation of transcranial current stimulation in realistic rat head model. Neural Eng 3Google Scholar
  26. Greenberg A, Whitten TA, Dickson CT (2016) Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states. NeuroImage 133:189–206CrossRefPubMedGoogle Scholar
  27. Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol: CB 24:333–339CrossRefPubMedGoogle Scholar
  28. Herrmann CS, Rach S, Neuling T, Struber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Human Neurosci 7:279CrossRefGoogle Scholar
  29. Jefferys JG (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75:689–723PubMedGoogle Scholar
  30. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol: CB 18:1839–1843CrossRefPubMedGoogle Scholar
  31. Kim A, Latchoumane C, Lee S, Kim GB, Cheong E, Augustine GJ, Shin HS (2012) Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc Natl Acad Sci USA 109:20673–20678CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kirov R, Weiss C, Siebner HR, Born J, Marshall L (2009) Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci USA 106:15460–15465CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kuki T, Ohshiro T, Ito S, Ji ZG, Fukazawa Y, Matsuzaka Y, Yawo H, Mushiake H (2013) Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat. Neurosci Res 75:35–45CrossRefPubMedGoogle Scholar
  34. Leffa DT, de Souza A, Scarabelot VL, Medeiros LF, de Oliveira C, Grevet EH, Caumo W, de Souza DO, Rohde LA, Torres IL (2016) Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 26:368–377CrossRefPubMedGoogle Scholar
  35. Li LM, Uehara K, Hanakawa T (2015) The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 9:181PubMedPubMedCentralGoogle Scholar
  36. Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 120:1161–1167CrossRefGoogle Scholar
  37. Lustenberger C, Boyle MR, Sankaraleengam A, Mellin J, Vaughn B, Flavio F (2016) Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor consolidation. Current Biology 26(16): 2127–2136Google Scholar
  38. Marshall L, Born J (2011) Brain Stimulation During Sleep. Sleep Med Clin 6:10CrossRefGoogle Scholar
  39. Marshall L, Binder S (2013) Contribution of transcranial oscillatory stimulation to research on neural networks: an emphasis on hippocampo-neocortical rhythms. Front Human Neurosci 7:614CrossRefGoogle Scholar
  40. Marshall L, Mölle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci: Official J Soc Neurosci 24:9985–9992CrossRefGoogle Scholar
  41. Marshall L, Helgadottir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613CrossRefPubMedGoogle Scholar
  42. Marshall L, Kirov R, Brade J, Mölle M, Born J (2011) Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS ONE 6:e16905CrossRefPubMedPubMedCentralGoogle Scholar
  43. Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 117:1623–1629CrossRefGoogle Scholar
  44. Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y, Hirase H (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun 7:11100CrossRefPubMedPubMedCentralGoogle Scholar
  45. Monte-Silva K, Kuo MF, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, Nitsche MA (2013) Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain stimulation 6:424–432CrossRefPubMedGoogle Scholar
  46. Munz MT, Prehn-Kristensen A, Thielking F, Mölle M, Goder R, Baving L (2015) Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder. Front Cell Neurosci 9:307CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nettersheim A, Hallschmid M, Born J, Diekelmann S (2015) The role of sleep in motor sequence consolidation: stabilization rather than enhancement. J Neurosci: Official J Soc Neurosci 35:6696–6702CrossRefGoogle Scholar
  48. Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS (2012) Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front psychiatry 3:83CrossRefPubMedPubMedCentralGoogle Scholar
  49. Niknazar M, Krishnan GP, Bazhenov M, Mednick SC (2015) Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans. PLoS ONE 10:e0144720CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain stimulation 1:206–223CrossRefPubMedGoogle Scholar
  51. Nitsche MA, Jakoubkova M, Thirugnanasambandam N, Schmalfuss L, Hullemann S, Sonka K, Paulus W, Trenkwalder C, Happe S (2010) Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. J Neurophysiol 104:2603–2614CrossRefPubMedGoogle Scholar
  52. Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. The Journal of neuroscience: the official journal of the Society for Neuroscience 30:11476–11485CrossRefGoogle Scholar
  53. Pelletier SJ, Cicchetti F (2015) Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 18Google Scholar
  54. Pennartz CM, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL (2004) The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. The Journal of neuroscience: the official journal of the Society for Neuroscience 24:6446–6456CrossRefGoogle Scholar
  55. Pereira de Vasconcelos A, Cassel JC (2015) The nonspecific thalamus: A place in a wedding bed for making memories last? Neurosci Biobehav Rev 54:175–196CrossRefPubMedGoogle Scholar
  56. Prehn-Kristensen A, Munz M, Goder R, Wilhelm I, Korr K, Vahl W, Wiesner CD, Baving L (2014) Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls. Brain stimulation 7:793–799CrossRefPubMedGoogle Scholar
  57. Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 114:589–595CrossRefGoogle Scholar
  58. Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain stimulation 2:215–228Google Scholar
  59. Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93:681–766CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, de Lecea L (2011) Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci USA 108:13305–13310CrossRefPubMedPubMedCentralGoogle Scholar
  61. Savic B, Meier B (2016) How transcranial direct current stimulation can modulate implicit motor sequence learning and consolidation: a brief review. Front Human Neurosci 10:26CrossRefGoogle Scholar
  62. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci: Official J Soc Neurosci 29:5202–5206CrossRefGoogle Scholar
  63. Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, Tracey I (2013) Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J Neurosci: Official J Soc Neurosci 33:11425–11431CrossRefGoogle Scholar
  64. Struber D, Rach S, Neuling T, Herrmann CS (2015) On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Front Cell Neurosci 9:311CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tecchio F, Zappasodi F, Assenza G, Tombini M, Vollaro S, Barbati G, Rossini PM (2010) Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol 104:1134–1140CrossRefPubMedGoogle Scholar
  66. Vossen A, Gross J, Thut G (2015) Alpha power increase after transcranial alternating current stimulation at alpha frequency (alpha-tACS) reflects plastic changes rather than entrainment. Brain stimulation 8:499–508CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A (2007) Transcranial direct current stimulation: a computer-based human model study. NeuroImage 35:1113–1124CrossRefPubMedGoogle Scholar
  68. Wagner S, Rampersad SM, Aydin U, Vorwerk J, Oostendorp TF, Neuling T, Herrmann CS, Stegeman DF, Wolters CH (2014) Investigation of tDCS volume conduction effects in a highly realistic head model. J Neural Eng 11:016002CrossRefPubMedGoogle Scholar
  69. Weiss SA, Faber DS (2010) Field effects in the CNS play functional roles. Front Neural Circ 4:15Google Scholar
  70. Westerberg CE, Florczak SM, Weintraub S, Mesulam MM, Marshall L, Zee PC, Paller KA (2015) Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging 36:2577–2586CrossRefPubMedPubMedCentralGoogle Scholar
  71. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 127:1031–1048CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Diana Campos-Beltrán
    • 1
  • Lisa Marshall
    • 1
  1. 1.Institute of Experimental and Clinical Pharmacology and Toxicology, University of LübeckLübeckGermany

Personalised recommendations