There Is No Cube of Opposition

Chapter
Part of the Studies in Universal Logic book series (SUL)

Abstract

The theory of opposition has been famously crystallized in a square. One of the most common generalizations of the square is a cube of opposition. We show here that there is no cube such that each of its faces is a square of opposition. We discuss the question of generalization and present two other generalizations of the theory of opposition to the third dimension: one based on Blanché’s hexagon of opposition, the other on the square of contrariety.

Keywords

Cube of opposition Generalization Hexagon of opposition n-Opposition Square of opposition 

Mathematics Subject Classification (2000)

Primary 03A05; Secondary 00A30; 03B45 03B53 03B22 03B50. 

Notes

Acknowledgements

Thanks to Catherine Chantilly and Robert Purdy for discussion and comments.

References

  1. 1.
    J.-Y. Beziau, S5 is paraconsistent logic and so is first-order classical logic. Logic. Invest. 9, 301–309 (2002)Google Scholar
  2. 2.
    J.-Y. Beziau, New light on the square of oppositions and its nameless corner. Logic. Invest. 10, 218–232 (2003)Google Scholar
  3. 3.
    J.-Y. Beziau, Paraconsistent logic from a modal viewpoint. J. Appl. Log. 3, 7–14 (2005)CrossRefGoogle Scholar
  4. 4.
    J.-Y. Beziau, The paraconsistent logic Z - A possible solution to Jaskowski’s problem. Logic Log. Philos. 15, 99–111 (2006)Google Scholar
  5. 5.
    J.-Y. Beziau, Adventures in the paraconsistent jungle, in Handbook of Paraconsistency (King’s College, London, 2007), pp. 63–80Google Scholar
  6. 6.
    J.-Y. Beziau (ed.), Special issue on the hexagon of opposition. Log. Univers. 6 (1–2) (2012)Google Scholar
  7. 7.
    J.-Y. Beziau, The new rising of the square, in [15] (2012), pp. 3–19Google Scholar
  8. 8.
    J.-Y. Beziau, The power of the hexagon. Log. Univers. 6, 1–43 (2012)CrossRefGoogle Scholar
  9. 9.
    J.-Y. Beziau, The metalogical hexagon of opposition. Argumentos 10, 111–122 (2013)Google Scholar
  10. 10.
    J.-Y. Beziau (ed.), La pointure du symbole (Petra, Paris, 2014)Google Scholar
  11. 11.
    J.-Y. Beziau, La puissance du symbole, in [10] (2014), pp. 9–34Google Scholar
  12. 12.
    J.-Y. Beziau, Disentangling contradiction from contrariety via incompatibility. Log. Univers. 10, 157–170 (2016)CrossRefGoogle Scholar
  13. 13.
    J.-Y. Beziau, Round squares are no contradictions, in New Directions in Paraconsistent Logic, ed. by J.-Y. Beziau, M. Chakraborty, S. Dutta (Springer, New Delhi, 2016), pp. 39–55Google Scholar
  14. 14.
    J.-Y. Beziau, S. Gerogiorgakis (eds.), New Dimension of the Square of Opposition (Philosophia, Munich, 2016)Google Scholar
  15. 15.
    J.-Y. Beziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition (Birkhäuser, Basel, 2012)Google Scholar
  16. 16.
    J.-Y. Beziau, G. Payette (eds.), Special issue on the square of opposition. Log. Univers. 2(1) (2008)Google Scholar
  17. 17.
    J.-Y. Beziau, G. Payette (eds.), The Square of Opposition - A General Framework for Cognition (Peter Lang, Bern, 2012)Google Scholar
  18. 18.
    J.-Y. Beziau, S. Read (eds.), Special issue on the square of opposition. Hist. Philos. Logic. 4 (2014)Google Scholar
  19. 19.
    F. Bjørdal, Cubes and hypercubes of opposition, with ethical ruminations on inviolability. Log. Univers. 10, 373–376 (2016)CrossRefGoogle Scholar
  20. 20.
    R. Blanché, Sur l’opposition des concepts. Theoria 19, 89–130 (1953)CrossRefGoogle Scholar
  21. 21.
    R. Blanché, Opposition et négation. Rev. Philos. 167, 187–216 (1957)Google Scholar
  22. 22.
    R. Blanché, Sur la structuration du tableau des connectifs interpropositionnels binaires. J. Symb. Log. 22, 17–18 (1957)CrossRefGoogle Scholar
  23. 23.
    R. Blanché, Structures intellectuelles. Essai sur l’organisation systématique des concepts (Vrin, Paris, 1966)Google Scholar
  24. 24.
    I.M. Bocheński, Ancient Formal Logic (North-Holland, Amsterdam, 1951)Google Scholar
  25. 25.
    I.M. Bocheński, A History of Formal Logic (University of Notre Dame Press, Notre Dame, 1961)Google Scholar
  26. 26.
    J.M. Campos-Benítez, The medieval modal octagon and the S5 Lewis modal system, in [17] (2012) pp. 99–118Google Scholar
  27. 27.
    D. Ciucci, D. Dubois, H. Prade, The structure of oppositions in rough set theory and formal concept analysis - toward a new bridge between the two Settings, in International Symposium on Foundations of Information and Knowledge Systems (FoIKS) (FolKS 2014), Bordeaux. LNCS, vol. 8367 (Springer, New York, 2014), pp. 154–173Google Scholar
  28. 28.
    M. Correia, The proto-exposition of Aristotelian categorical logic, in The Square of Opposition: A Cornerstone of Thought, ed. by J.-Y. Beziau, G. Basti (Springer, Cham, 2016). doi: 10.1007/978-3-319-45062-9 Google Scholar
  29. 29.
    J.-P. Desclés, A.Pascu, The cube generalizing Aristotle’s square in logic of determination of objects (LDO), in [15], pp. 277–291Google Scholar
  30. 30.
    D. Dubois, H. Prade, A. Rico, The cube of opposition: a structure underlying many knowledge representation formalisms, in International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina (AAAI Press, Menlo Park, 2015) pp. 2933–2939Google Scholar
  31. 31.
    D. Dubois, H. Prade, A. Rico, The cube of opposition and the complete appraisal of situations by means of sugeno integrals, in International Symposium on Methodologies for Intelligent Systems (ISMIS 2015), Lyon. LNAI vol. 9384 (Springer, New York, 2015), pp. 197–207Google Scholar
  32. 32.
    V. Glivenko, Théorie générale des structures (Hermann, Paris, 1938)Google Scholar
  33. 33.
    I. Grattan-Guinness, Omnipresence, multipresence and ubiquity: kinds of generality in and around mathematics and logics. Log. Univers. 5, 21–73 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Horn, On the contrary: disjunctive syllogism and pragmatic strengthening, in The Road to Universal Logic Festschrift for 50th Birthday of Jean-Yves Béziau, vol. I, ed. by A. Koslow, A. Buchsbaum (Birkhäuser, Basel, 2012), pp. 241–265Google Scholar
  35. 35.
    D. Jaspers, Logic and colour. Log. Univers. 6, 227–248 (2012)CrossRefGoogle Scholar
  36. 36.
    J.C. Joerden, Deontological square, hexagon, and decagon: a deontic framework for supererogation. Log. Univers. 6, 201–216 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Johnstone, The modal octagon and John Buridan’s modal ontology, in The Square of Opposition: A Cornerstone of Thought, ed. by J.-Y. Beziau, G. Basti (Springer, Cham, 2016). doi: 10.1007/978-3-319-45062-9 Google Scholar
  38. 38.
    I. Kant, Logik - Ein Handbuch zu Vorlesungen (im Auftrag Kants hrsg. von Gottlob Benjamin Jäsche) (Nicolovius, Königsberg, 1800)Google Scholar
  39. 39.
    W. Lenzen, Leibniz’s logic and the “cube of opposition”. Log. Univers. 10, 171–190 (2016)CrossRefGoogle Scholar
  40. 40.
    T. Libert, Hypercubes of duality, in [15], pp. 293–301Google Scholar
  41. 41.
    D. Londey, C. Johanson, Philosophia Antiqua, the logic of Apuleius (Brill, Leiden, 1987)Google Scholar
  42. 42.
    D. Luzeaux, J. Sallantin, C. Dartnell, Logical extensions of Aristotle’s square. Log. Univers. 2, 167–187 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Moktefi, S.-J. Shin (eds.) Visual Reasoning with Diagrams (Birkhäuser, Basel, 2013)Google Scholar
  44. 44.
    A. Moretti, Geometry of modalities? yes: through n-opposition theory, in Aspects of Universal Logic, Travaux de Logique, vol. 17, ed. by J.-Y. Beziau, A. Costa Leite, A. Facchini (Université de Neuchâtel, Neuchâtel, 2004), pp. 102–145Google Scholar
  45. 45.
    A. Moretti, The geometry of opposition. PhD Thesis, University of Neuchâtel (2009)Google Scholar
  46. 46.
    A. Moretti, From the “logical square” to the “logical poly-simplexes”, in [17] (2012), pp. 119–156Google Scholar
  47. 47.
    D. Parrochia, P. Neuville, Towards a General Theory of Classifications (Birkhäuser, Basel, 2013)CrossRefGoogle Scholar
  48. 48.
    R. Pellissier, “Setting” n-opposition. Log. Univers. 2, 235–263 (2008)CrossRefGoogle Scholar
  49. 49.
    C. Pizzi, Aristotle’s cubes and consequential implication. Log. Univers. 2, 143–153 (2008)CrossRefGoogle Scholar
  50. 50.
    C. Pizzi, Generalization and composition of modal squares of oppositions. Log. Univers. 10, 313–326 (2016)CrossRefGoogle Scholar
  51. 51.
    F. de Saussure, in Cours de linguistique générale, ed. by C. Bally, A. Sechehaye (Payot, Paris, 1916)Google Scholar
  52. 52.
    M.W. Sullyvan, Apuleian logic - the nature, sources and influence of Apuleius’s Peri Hermeneias (North-Holland Amsterdam, 1967)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Brazilian Research CouncilUniversity of BrazilRio de JaneiroBrazil

Personalised recommendations