Compactifications of S-arithmetic Quotients for the Projective General Linear Group

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 188)

Abstract

Let F be a global field, let S be a nonempty finite set of places of F which contains the archimedean places of F, let \(d\geqslant 1\), and let \(X =\prod _{v\in S} X_v\) where \(X_v\) is the symmetric space (resp., Bruhat-Tits building) associated to \({{\mathrm{PGL}}}_d(F_v)\) if v is archimedean (resp., non-archimedean). In this paper, we construct compactifications \(\Gamma \backslash \bar{X}\) of the quotient spaces \(\Gamma \backslash X\) for S-arithmetic subgroups \(\Gamma \) of \({{\mathrm{PGL}}}_d(F)\). The constructions make delicate use of the maximal Satake compactification of \(X_v\) (resp., the polyhedral compactification of \(X_v\) of Gérardin and Landvogt) for v archimedean (resp., non-archimedean). We also consider a variant of \(\bar{X}\) in which we use the standard Satake compactification of \(X_v\) (resp., the compactification of \(X_v\) due to Werner).

MSCs

Primary 14M25 Secondary 14F20 

References

  1. 1.
    Borel, A.: Some finiteness properties of adele groups over number fields. Publ. Math. Inst. Hautes Études Sci. 16, 5–30 (1963)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Borel, A., Ji, L.: Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications. Birkhäuser, Boston, MA (2006)Google Scholar
  3. 3.
    Borel, A., Serre, J.P.: Corners and arithmetic groups. Comment. Math. Helv. 4, 436–491 (1973)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local: I. Données radicielles valuées, Publ. Math. Inst. Hautes Études Sci. 41, 5–251 (1972)Google Scholar
  5. 5.
    Deligne, P., Husemöller, D.: Survey of Drinfel’d modules, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math. 67, Amer. Math. Soc. Providence, RI, 25–91 (1987)Google Scholar
  6. 6.
    Drinfeld, V.G.: Elliptic modules, Mat. Sb. (N.S.) 94(136), 594–627, 656 (1974) (Russian), English translation: Math. USSR-Sb. 23, 561–592 (1974)Google Scholar
  7. 7.
    Gérardin, P.: Harmonic functions on buildings of reductive split groups, Operator algebras and group representations, Monogr. Stud. Math. 17, Pitman, Boston, MA, 208–221 (1984)Google Scholar
  8. 8.
    Godement, R.: Domaines fondamentaux des groupes arithmétiques, Séminaire Bourbaki 8(257), 201–205 (1962–1964)Google Scholar
  9. 9.
    Goldman, O., Iwahori, N.: The space of \(p\)-adic norms. Acta Math. 109, 137–177 (1963)Google Scholar
  10. 10.
    Goresky, M., Tai, Y.: Toroidal and reductive Borel-Serre compactifications of locally symmetric spaces. Amer. J. Math. 121, 1095–1151 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Guivarc’h, Y., Rémy, B.: Group-theoretic compactifcation of Bruhat-Tits buildings. Ann. Sci. Éc. Norm. Supér. 39, 871–920 (2006)MATHGoogle Scholar
  12. 12.
    Harder, G.: Minkowskische Reduktionstheorie über Funktionenkörpern. Invent. Math. 7, 33–54 (1969)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Harder, G.: Chevalley groups over function fields and automorphic forms. Ann. Math. 100, 249–306 (1974)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ji, L., Murty, V.K., Saper, L., Scherk, J.: The fundamental group of reductive Borel-Serre and Satake compactifications. Asian J. Math. 19, 465–485 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kapranov, M.M.: Cuspidal divisors on the modular varieties of elliptic modules. Izv. Akad. Nauk SSSR Ser. Mat. 51, 568–583, 688 (1987), English translation: Math. USSR-Izv. 30, 533–547 (1988)Google Scholar
  16. 16.
    Kato, K., Usui,  S.: Classifying spaces of degenerating polarized Hodge structures. Ann. Math. Stud., Princeton Univ. Press (2009)Google Scholar
  17. 17.
    Kondo,  S., Yasuda,  S.: The Borel-Moore homology of an arithmetic quotient of the Bruhat-Tits building of PGL of a non-archimedean local field in positive characteristic and modular symbols, preprint, arXiv:1406.7047
  18. 18.
    Koshikawa, T.: On heights of motives with semistable reduction, preprint, arXiv:1505.01873
  19. 19.
    Landvogt, E.: A compactification of the Bruhat-Tits building. In: Lecture Notes in Mathematics, vol. 1619. Springer, Berlin (1996)Google Scholar
  20. 20.
    Pink, R.: On compactification of Drinfeld moduli schemes. Sûrikaisekikenkyûsho Kôkyûroku 884, 178–183 (1994)Google Scholar
  21. 21.
    Pink, R.: Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank. Manuscripta Math. 140, 333–361 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Satake, I.: On representations and compactifications of symmetric Riemannian spaces. Ann. Math. 71, 77–110 (1960)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Satake, I.: On compactifications of the quotient spaces for arithmetically defined discontinuous groups. Ann. Math. 72, 555–580 (1960)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Werner, A.: Compactification of the Bruhat-Tits building of PGL by lattices of smaller rank. Doc. Math. 6, 315–341 (2001)MathSciNetMATHGoogle Scholar
  25. 25.
    Werner, A.: Compactification of the Bruhat-Tits building of PGL by semi-norms. Math. Z. 248, 511–526 (2004)CrossRefMATHGoogle Scholar
  26. 26.
    Zucker, S.: \(L^2\)-cohomology of warped products and arithmetic groups. Invent. Math. 70, 169–218 (1982)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zucker, S.: Satake compactifications. Comment. Math. Helv. 58, 312–343 (1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations