Compactifications of S-arithmetic Quotients for the Projective General Linear Group

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 188)

Abstract

Let F be a global field, let S be a nonempty finite set of places of F which contains the archimedean places of F, let \(d\geqslant 1\), and let \(X =\prod _{v\in S} X_v\) where \(X_v\) is the symmetric space (resp., Bruhat-Tits building) associated to \({{\mathrm{PGL}}}_d(F_v)\) if v is archimedean (resp., non-archimedean). In this paper, we construct compactifications \(\Gamma \backslash \bar{X}\) of the quotient spaces \(\Gamma \backslash X\) for S-arithmetic subgroups \(\Gamma \) of \({{\mathrm{PGL}}}_d(F)\). The constructions make delicate use of the maximal Satake compactification of \(X_v\) (resp., the polyhedral compactification of \(X_v\) of Gérardin and Landvogt) for v archimedean (resp., non-archimedean). We also consider a variant of \(\bar{X}\) in which we use the standard Satake compactification of \(X_v\) (resp., the compactification of \(X_v\) due to Werner).

MSCs

Primary 14M25 Secondary 14F20 

Notes

Acknowledgements

The work of the first two authors was supported in part by the National Science Foundation under Grant No. 1001729. The work of the third author was partially supported by the National Science Foundation under Grant Nos. 1401122/1661568 and 1360583, and by a grant from the Simons Foundation (304824 to R.S.).

References

  1. 1.
    Borel, A.: Some finiteness properties of adele groups over number fields. Publ. Math. Inst. Hautes Études Sci. 16, 5–30 (1963)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Borel, A., Ji, L.: Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications. Birkhäuser, Boston, MA (2006)Google Scholar
  3. 3.
    Borel, A., Serre, J.P.: Corners and arithmetic groups. Comment. Math. Helv. 4, 436–491 (1973)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local: I. Données radicielles valuées, Publ. Math. Inst. Hautes Études Sci. 41, 5–251 (1972)Google Scholar
  5. 5.
    Deligne, P., Husemöller, D.: Survey of Drinfel’d modules, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math. 67, Amer. Math. Soc. Providence, RI, 25–91 (1987)Google Scholar
  6. 6.
    Drinfeld, V.G.: Elliptic modules, Mat. Sb. (N.S.) 94(136), 594–627, 656 (1974) (Russian), English translation: Math. USSR-Sb. 23, 561–592 (1974)Google Scholar
  7. 7.
    Gérardin, P.: Harmonic functions on buildings of reductive split groups, Operator algebras and group representations, Monogr. Stud. Math. 17, Pitman, Boston, MA, 208–221 (1984)Google Scholar
  8. 8.
    Godement, R.: Domaines fondamentaux des groupes arithmétiques, Séminaire Bourbaki 8(257), 201–205 (1962–1964)Google Scholar
  9. 9.
    Goldman, O., Iwahori, N.: The space of \(p\)-adic norms. Acta Math. 109, 137–177 (1963)Google Scholar
  10. 10.
    Goresky, M., Tai, Y.: Toroidal and reductive Borel-Serre compactifications of locally symmetric spaces. Amer. J. Math. 121, 1095–1151 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Guivarc’h, Y., Rémy, B.: Group-theoretic compactifcation of Bruhat-Tits buildings. Ann. Sci. Éc. Norm. Supér. 39, 871–920 (2006)MATHGoogle Scholar
  12. 12.
    Harder, G.: Minkowskische Reduktionstheorie über Funktionenkörpern. Invent. Math. 7, 33–54 (1969)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Harder, G.: Chevalley groups over function fields and automorphic forms. Ann. Math. 100, 249–306 (1974)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ji, L., Murty, V.K., Saper, L., Scherk, J.: The fundamental group of reductive Borel-Serre and Satake compactifications. Asian J. Math. 19, 465–485 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kapranov, M.M.: Cuspidal divisors on the modular varieties of elliptic modules. Izv. Akad. Nauk SSSR Ser. Mat. 51, 568–583, 688 (1987), English translation: Math. USSR-Izv. 30, 533–547 (1988)Google Scholar
  16. 16.
    Kato, K., Usui,  S.: Classifying spaces of degenerating polarized Hodge structures. Ann. Math. Stud., Princeton Univ. Press (2009)Google Scholar
  17. 17.
    Kondo,  S., Yasuda,  S.: The Borel-Moore homology of an arithmetic quotient of the Bruhat-Tits building of PGL of a non-archimedean local field in positive characteristic and modular symbols, preprint, arXiv:1406.7047
  18. 18.
    Koshikawa, T.: On heights of motives with semistable reduction, preprint, arXiv:1505.01873
  19. 19.
    Landvogt, E.: A compactification of the Bruhat-Tits building. In: Lecture Notes in Mathematics, vol. 1619. Springer, Berlin (1996)Google Scholar
  20. 20.
    Pink, R.: On compactification of Drinfeld moduli schemes. Sûrikaisekikenkyûsho Kôkyûroku 884, 178–183 (1994)Google Scholar
  21. 21.
    Pink, R.: Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank. Manuscripta Math. 140, 333–361 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Satake, I.: On representations and compactifications of symmetric Riemannian spaces. Ann. Math. 71, 77–110 (1960)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Satake, I.: On compactifications of the quotient spaces for arithmetically defined discontinuous groups. Ann. Math. 72, 555–580 (1960)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Werner, A.: Compactification of the Bruhat-Tits building of PGL by lattices of smaller rank. Doc. Math. 6, 315–341 (2001)MathSciNetMATHGoogle Scholar
  25. 25.
    Werner, A.: Compactification of the Bruhat-Tits building of PGL by semi-norms. Math. Z. 248, 511–526 (2004)CrossRefMATHGoogle Scholar
  26. 26.
    Zucker, S.: \(L^2\)-cohomology of warped products and arithmetic groups. Invent. Math. 70, 169–218 (1982)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zucker, S.: Satake compactifications. Comment. Math. Helv. 58, 312–343 (1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations