Skip to main content

Abstract

Photodynamic therapy (PDT) is a clinically approved practice for treatment of cancer and infectious diseases. PDT involves systemic or topical administration of a photosensitizer (PS), followed by irradiation of the target area with light of a wavelength matching the absorption band of the PS. In the presence of oxygen, photochemical reactions trigger the production of reactive oxygen species and, consequently, cell death by oxidative stress. Besides causing direct cytotoxicity to tumor cells, PDT induces destruction of the tumor vasculature releasing pro-inflammatory cytokines. Current literature supports that PDT is able to affect both the innate and adaptive responses of the immune system. In addition, PDT-induced adaptive immunity may attack distant untreated tumor cells and lead to development of antitumor memory immunity, which can potentially avoid the cancer relapse. Conversely, pro-inflammatory activity of PDT can also collaborate to resolve local infections since more neutrophils are recruited to the infected region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol. 1996;64(3):469–85.

    Article  CAS  PubMed  Google Scholar 

  2. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–81.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Garg AD, Krysko DV, Vandenabeele P, Agostinis P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci. 2011;10(5):670–80.

    Article  CAS  PubMed  Google Scholar 

  4. Maugain E, Sasnouski S, Zorin V, Merlin JL, Guillemin F, Bezdetnaya L. Foscan-based photodynamic treatment in vivo: correlation between efficacy and Foscan accumulation in tumor, plasma and leukocytes. Oncol Rep. 2004;12(3):639–45.

    CAS  PubMed  Google Scholar 

  5. Bellnier DA, Greco WR, Parsons JC, Oseroff AR, Kuebler A, Dougherty TJ. An assay for the quantitation of Photofrin in tissues and fluids. Photochem Photobiol. 1997;66(2):237–44.

    Article  CAS  PubMed  Google Scholar 

  6. Gudgin Dickson EF, Holmes H, Jori G, Kennedy JC, Nadeau P, Pottier RH, et al. On the source of the oscillations observed during in vivo zinc phthalocyanine fluorescence pharmacokinetic measurements in mice. Photochem Photobiol. 1995;61(5):506–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bellnier DA, Ho YK, Pandey RK, Missert JR, Dougherty TJ. Distribution and elimination of Photofrin II in mice. Photochem Photobiol. 1989;50(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  8. Little FM, Gomer CJ, Hyman S, Apuzzo ML. Observations in studies of quantitative kinetics of tritium labelled hematoporphyrin derivatives (HpDI and HpDII) in the normal and neoplastic rat brain model. J Neurooncol. 1984;2(4):361–70.

    Article  CAS  PubMed  Google Scholar 

  9. Schuitmaker JJ, Feitsma RI, Journee-De Korver JG, Dubbelman TM, Pauwels EK. Tissue distribution of bacteriochlorin a labelled with 99mTc-pertechnetate in hamster Greene melanoma. Int J Radiat Biol. 1993;64(4):451–8.

    Article  CAS  PubMed  Google Scholar 

  10. Frisoli JK, Tudor EG, Flotte TJ, Hasan T, Deutsch TF, Schomacker KT. Pharmacokinetics of a fluorescent drug using laser-induced fluorescence. Cancer Res. 1993;53(24):5954–61.

    CAS  PubMed  Google Scholar 

  11. Sheng C, Pogue BW, Wang E, Hutchins JE, Hoopes PJ. Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors. Photochem Photobiol. 2004;79(6):520–5.

    Article  CAS  PubMed  Google Scholar 

  12. Bellnier DA, Dougherty TJ. A preliminary pharmacokinetic study of intravenous Photofrin in patients. J Clin Laser Med Surg. 1996;14(5):311–4.

    CAS  PubMed  Google Scholar 

  13. Moriwaki SI, Misawa J, Yoshinari Y, Yamada I, Takigawa M, Tokura Y. Analysis of photosensitivity in Japanese cancer-bearing patients receiving photodynamic therapy with porfimer sodium (Photofrin). Photodermatol Photoimmunol Photomed. 2001;17(5):241–3.

    Article  CAS  PubMed  Google Scholar 

  14. Bellnier DA, Greco WR, Loewen GM, Nava H, Oseroff AR, Pandey RK, et al. Population pharmacokinetics of the photodynamic therapy agent 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a in cancer patients. Cancer Res. 2003;63(8):1806–13.

    CAS  PubMed  Google Scholar 

  15. Jones HJ, Vernon DI, Brown SB. Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics. Br J Cancer. 2003;89(2):398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Egorin MJ, Zuhowski EG, Sentz DL, Dobson JM, Callery PS, Eiseman JL. Plasma pharmacokinetics and tissue distribution in CD2F1 mice of Pc4 (NSC 676418), a silicone phthalocyanine photodynamic sensitizing agent. Cancer Chemother Pharmacol. 1999;44(4):283–94.

    Article  CAS  PubMed  Google Scholar 

  17. Brun PH, DeGroot JL, Dickson EF, Farahani M, Pottier RH. Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy. Photochem Photobiol Sci. 2004;3(11–12):1006–10.

    Article  CAS  PubMed  Google Scholar 

  18. Woodburn KW, Stylli S, Hill JS, Kaye AH, Reiss JA, Phillips DR. Evaluation of tumour and tissue distribution of porphyrins for use in photodynamic therapy. Br J Cancer. 1992;65(3):321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richter AM, Cerruti-Sola S, Sternberg ED, Dolphin D, Levy JG. Biodistribution of tritiated benzoporphyrin derivative (3H-BPD-MA), a new potent photosensitizer, in normal and tumor-bearing mice. J Photochem Photobiol B. 1990;5(2):231–44.

    Article  CAS  PubMed  Google Scholar 

  20. Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy. J Photochem Photobiol B. 1994;23(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  21. Jori G. In vivo transport and pharmacokinetic behavior of tumour photosensitizers. Ciba Found Symp. 1989;146:78–86.

    CAS  PubMed  Google Scholar 

  22. Larroque C, Pelegrin A, Van Lier JE. Serum albumin as a vehicle for zinc phthalocyanine: photodynamic activities in solid tumour models. Br J Cancer. 1996;74(12):1886–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kessel D, Poretz RD. Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME). Photochem Photobiol. 2000;71(1):94–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kongshaug M, Moan J, Brown SB. The distribution of porphyrins with different tumour localising ability among human plasma proteins. Br J Cancer. 1989;59(2):184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maziere JC, Santus R, Morliere P, Reyftmann JP, Candide C, Mora L, et al. Cellular uptake and photosensitizing properties of anticancer porphyrins in cell membranes and low and high density lipoproteins. J Photochem Photobiol B. 1990;6(1–2):61–8.

    Article  CAS  PubMed  Google Scholar 

  26. Jori G, Reddi E. The role of lipoproteins in the delivery of tumour-targeting photosensitizers. Int J Biochem. 1993;25(10):1369–75.

    Article  CAS  PubMed  Google Scholar 

  27. Korbelik M. Low density lipoprotein receptor pathway in the delivery of Photofrin: how much is it relevant for selective accumulation of the photosensitizer in tumors? J Photochem Photobiol B. 1992;12(1):107–9.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan F, Leunig M, Berk DA, Jain RK. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res. 1993;45(3):269–89.

    Article  CAS  PubMed  Google Scholar 

  29. Allison BA, Pritchard PH, Levy JG. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer. 1994;69(5):833–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pottier R, Kennedy JC. The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue. J Photochem Photobiol B. 1990;8(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  31. Freitas I. Lipid accumulation: the common feature to photosensitizer-retaining normal and malignant tissues [news]. J Photochem Photobiol B. 1990;7(2–4):359–61.

    Article  CAS  PubMed  Google Scholar 

  32. Korbelik M, Krosl G. Photofrin accumulation in malignant and host cell populations of a murine fibrosarcoma. Photochem Photobiol. 1995;62(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  33. Henderson BW, Waldow SM, Mang TS, Potter WR, Malone PB, Dougherty TJ. Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cancer Res. 1985;45(2):572–6.

    CAS  PubMed  Google Scholar 

  34. Henderson BW, Fingar VH. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model. Photochem Photobiol. 1989;49(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  35. Castellani A, Pace GP, Concioli M. Photodynamic effect of haematoporphyrin on blood microcirculation. J Pathol Bacteriol. 1963;86:99–102.

    Article  CAS  PubMed  Google Scholar 

  36. Star WM, Marijnissen HP, van den Berg-Blok AE, Versteeg JA, Franken KA, Reinhold HS. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 1986;46(5):2532–40.

    CAS  PubMed  Google Scholar 

  37. Bhuvaneswari R, Gan YY, Soo KC, Olivo M. The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci. 2009;66(14):2275–83.

    Article  CAS  PubMed  Google Scholar 

  38. Tseng MT, Reed MW, Ackermann DM, Schuschke DA, Wieman TJ, Miller FN. Photodynamic therapy induced ultrastructural alterations in microvasculature of the rat cremaster muscle. Photochem Photobiol. 1988;48(5):675–81.

    Article  CAS  PubMed  Google Scholar 

  39. Gomer CJ, Rucker N, Murphree AL. Differential cell photosensitivity following porphyrin photodynamic therapy. Cancer Res. 1988;48(16):4539–42.

    CAS  PubMed  Google Scholar 

  40. West CM, West DC, Kumar S, Moore JV. A comparison of the sensitivity to photodynamic treatment of endothelial and tumour cells in different proliferative states. Int J Radiat Biol. 1990;58(1):145–56.

    Article  CAS  PubMed  Google Scholar 

  41. Fingar VH, Wieman TJ, Wiehle SA, Cerrito PB. The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res. 1992;52(18):4914–21.

    CAS  PubMed  Google Scholar 

  42. Fingar VH, Kik PK, Haydon PS, Cerrito PB, Tseng M, Abang E, et al. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br J Cancer. 1999;79(11–12):1702–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He C, Agharkar P, Chen B. Intravital microscopic analysis of vascular perfusion and macromolecule extravasation after photodynamic vascular targeting therapy. Pharm Res. 2008;25(8):1873–80.

    Article  CAS  PubMed  Google Scholar 

  44. Debefve E, Cheng C, Schaefer SC, Yan H, Ballini JP, van den Bergh H, et al. Photodynamic therapy induces selective extravasation of macromolecules: insights using intravital microscopy. J Photochem Photobiol B, Biol. 2010;98(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  45. Khurana M, Moriyama EH, Mariampillai A, Wilson BC. Intravital high-resolution optical imaging of individual vessel response to photodynamic treatment. J Biomed Opt. 2008;13(4):040502.

    Article  PubMed  Google Scholar 

  46. Madar-Balakirski N, Tempel-Brami C, Kalchenko V, Brenner O, Varon D, Scherz A, et al. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with Tookad. PLoS One. 2010;5(4):e10282.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dolmans DE, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP, et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res. 2002;62(7):2151–6.

    CAS  PubMed  Google Scholar 

  48. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Korbelik M. PDT-associated host response and its role in the therapy outcome. Lasers Surg Med. 2006;38(5):500–8.

    Article  PubMed  Google Scholar 

  50. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Magna M, Pisetsky DS. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin Ther. 2016;38(5):1029–41.

    Article  CAS  PubMed  Google Scholar 

  52. Bhargava A, Mishra D, Banerjee S, Mishra PK. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy. 2012;4(7):703–18.

    Article  CAS  PubMed  Google Scholar 

  53. Henderson BW, Gollnick SO. Mechanistic principles of photodynamic therapy. In: Vo-Dinh T, editor. Biomedical photonics handbook. Boca Raton: CRC Press; 2003. p. 36.1–27.

    Google Scholar 

  54. Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res. 1998;150(5 Suppl):S146–56.

    Article  CAS  PubMed  Google Scholar 

  55. Gollnick SO, Owczarczak B, Maier P. Photodynamic therapy and anti-tumor immunity. Lasers Surg Med. 2006;38(5):509–15.

    Article  PubMed  Google Scholar 

  56. Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 2005;65(3):1018–26.

    CAS  PubMed  Google Scholar 

  57. Korbelik M, Stott B, Sun J. Photodynamic therapy-generated vaccines: relevance of tumour cell death expression. Br J Cancer. 2007;97(10):1381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol. 2002;270:169–84.

    CAS  PubMed  Google Scholar 

  59. Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res. 1996;56(10):2355–60.

    CAS  PubMed  Google Scholar 

  60. Gollnick SO, Kabingu E, Kousis PC, Henderson BW. Stimulation of the host immune response by photodynamic therapy (PDT). Proc SPIE. 2004;5319:60–70.

    Article  CAS  Google Scholar 

  61. Stott B, Korbelik M. Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy. Cancer Immunol Immunother. 2007;56(5):649–58.

    Article  CAS  PubMed  Google Scholar 

  62. Krosl G, Korbelik M, Dougherty GJ. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br J Cancer. 1995;71(3):549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Korbelik M, Cecic I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett. 1999;137(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  64. de Vree WJ, Essers MC, Koster JF, Sluiter W. Role of interleukin 1 and granulocyte colony-stimulating factor in photofrin-based photodynamic therapy of rat rhabdomyosarcoma tumors. Cancer Res. 1997;57(13):2555–8.

    PubMed  Google Scholar 

  65. Kousis PC, Henderson BW, Maier PG, Gollnick SO. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 2007;67(21):10501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Korbelik M, Cecic I. Mechanism of tumor destruction by photodynamic therapy. In: Nalwa HS, editor. Handbook of photochemistry and photobiology. Stevenson Ranch: American Scientific Publishers; 2003. p. 39–77.

    Google Scholar 

  67. Sun J, Cecic I, Parkins CS, Korbelik M. Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours. Photochem Photobiol Sci. 2002;1(9):690–5.

    Article  CAS  PubMed  Google Scholar 

  68. Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer. 2003;88(11):1772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hunt DW, Levy JG. Immunomodulatory aspects of photodynamic therapy. Expert Opin Investig Drugs. 1998;7(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  70. Yusuf N, Katiyar SK, Elmets CA. The immunosuppressive effects of phthalocyanine photodynamic therapy in mice are mediated by CD4+ and CD8+ T cells and can be adoptively transferred to naive recipients. Photochem Photobiol. 2008;84(2):366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Korbelik M, Krosl G, Krosl J, Dougherty GJ. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res. 1996;56(24):5647–52.

    CAS  PubMed  Google Scholar 

  72. Canti GL, Lattuada D, Nicolin A, Taroni P, Valentini G, Cubeddu R. Immunopharmacology studies on photosensitizers used in photodynamic therapy. Proc SPIE. 1994;2078:268–75.

    Article  CAS  Google Scholar 

  73. Korbelik M, Dougherty GJ. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res. 1999;59(8):1941–6.

    CAS  PubMed  Google Scholar 

  74. Mroz P, Szokalska A, Wu MX, Hamblin MR. Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS One. 2010;5(12):e15194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mroz P, Vatansever F, Muchowicz A, Hamblin MR. Photodynamic therapy of murine mastocytoma induces specific immune responses against the cancer/testis antigen P1A. Cancer Res. 2013;73(21):6462–70.

    Article  CAS  PubMed  Google Scholar 

  76. Maeurer MJ, Gollin SM, Storkus WJ, Swaney W, Karbach J, Martin D, et al. Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6. Clin Cancer Res. 1996;2(4):641–52.

    CAS  PubMed  Google Scholar 

  77. Wachowska M, Gabrysiak M, Muchowicz A, Bednarek W, Barankiewicz J, Rygiel T, et al. 5-Aza-2′-deoxycytidine potentiates antitumour immune response induced by photodynamic therapy. Eur J Cancer. 2014;50(7):1370–81.

    Google Scholar 

  78. Abdel-Hady ES, Martin-Hirsch P, Duggan-Keen M, Stern PL, Moore JV, Corbitt G, et al. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res. 2001;61(1):192–6.

    CAS  PubMed  Google Scholar 

  79. Kabingu E, Vaughan L, Owczarczak B, Ramsey KD, Gollnick SO. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br J Cancer. 2007;96(12):1839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Henderson BW, Gollnick SO, Snyder JW, Busch TM, Kousis PC, Cheney RT, et al. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 2004;64(6):2120–6.

    Article  CAS  PubMed  Google Scholar 

  81. Reis e Sousa C. Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol. 2004;16(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  82. Benvenuti F. The dendritic cell synapse: a life dedicated to T cell activation. Front Immunol. 2016;7:70.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sur BW, Nguyen P, Sun CH, Tromberg BJ, Nelson EL. Immunophototherapy using PDT combined with rapid intratumoral dendritic cell injection. Photochem Photobiol. 2008;84(5):1257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol. 2006;24:519–40.

    Article  CAS  PubMed  Google Scholar 

  85. Gollnick SO, Vaughan L, Henderson BW. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res. 2002;62(6):1604–8.

    CAS  PubMed  Google Scholar 

  86. Korbelik M, Sun J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol Immunother. 2006;55(8):900–9.

    Article  CAS  PubMed  Google Scholar 

  87. Korbelik M, Merchant S, Huang N. Exploitation of immune response-eliciting properties of hypocrellin photosensitizer SL052-based photodynamic therapy for eradication of malignant tumors. Photochem Photobiol. 2009;85(6):1418–24.

    Article  CAS  PubMed  Google Scholar 

  88. Jalili A, Makowski M, Switaj T, Nowis D, Wilczynski GM, Wilczek E, et al. Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res. 2004;10(13):4498–508.

    Article  CAS  PubMed  Google Scholar 

  89. Gomer CJ, Ferrario A, Murphree AL. The effect of localized porphyrin photodynamic therapy on the induction of tumour metastasis. Br J Cancer. 1987;56(1):27–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ. Immunological aspects of photodynamic therapy of liver tumors in a rat model for colorectal cancer. Photochem Photobiol. 2003;78(3):235–40.

    Article  PubMed  Google Scholar 

  91. Dragieva G, Hafner J, Dummer R, Schmid-Grendelmeier P, Roos M, Prinz BM, et al. Topical photodynamic therapy in the treatment of actinic keratoses and Bowen’s disease in transplant recipients. Transplantation. 2004;77(1):115–21.

    Article  PubMed  Google Scholar 

  92. Thong PS, Ong KW, Goh NS, Kho KW, Manivasager V, Bhuvaneswari R, et al. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma. Lancet Oncol. 2007;8(10):950–2.

    Article  CAS  PubMed  Google Scholar 

  93. Thong PS, Olivo M, Kho KW, Bhuvaneswari R, Chin WW, Ong KW, et al. Immune response against angiosarcoma following lower fluence rate clinical photodynamic therapy. J Environ Pathol Toxicol Oncol. 2008;27(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  94. Friedberg JS, Mick R, Stevenson JP, Zhu T, Busch TM, Shin D, et al. Phase II trial of pleural photodynamic therapy and surgery for patients with non-small-cell lung cancer with pleural spread. J Clin Oncol. 2004;22(11):2192–201.

    Article  CAS  PubMed  Google Scholar 

  95. Kabingu E, Oseroff AR, Wilding GE, Gollnick SO. Enhanced systemic immune reactivity to a basal cell carcinoma associated antigen following photodynamic therapy. Clin Cancer Res. 2009;15(13):4460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gad F, Zahra T, Francis KP, Hasan T, Hamblin MR. Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci. 2004;3(5):451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tanaka M, Mroz P, Dai T, Huang L, Morimoto Y, Kinoshita M, et al. Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS One. 2012;7(6):e39823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gryson O. Servier medical art France: servier; 2016 [Available from: http://www.servier.com/Powerpoint-image-bank.

Download references

Acknowledgments

MR Hamblin was supported by the US NIH Grant R01AI050875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Richard Hamblin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamblin, M.R., Sabino, C.P. (2016). Systemic Effects. In: Sellera, F., Nascimento, C., Ribeiro, M. (eds) Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-45007-0_6

Download citation

Publish with us

Policies and ethics