Skip to main content

Is Biologically Inspired Design Domain Independent?

Abstract

Current theories of biologically inspired design assume that the design processes are domain independent. But is this assumption true? Design Study Library (DSL) is a digital library of eighty-three cases of biologically inspired design collected from a senior-level interdisciplinary class at Georgia Tech over 2006–2013. We describe a preliminary analysis of the DSL case studies. We posit that the assumption about the domain independence is questionable. In particular, some of the parameters in the domains of physiology and sensing appear to be different from the more common domains of mechanics and materials.

Keywords

  • Digital Library
  • Mechanical Device
  • Pedagogical Technique
  • Problem Decomposition
  • Georgia Tech

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-44989-0_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-44989-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Hardcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Altshuller G (1984) Creativity as an exact science: the theory of the solution of inventive problems. translated by Anthony Williams. Gordon & Breach, Amsterdam

    Google Scholar 

  • Bar-Cohen Y (ed) (2011) Biomimetics: nature-based innovation. CRC Press, Boca Raton

    Google Scholar 

  • Baumeister D, Tocke R, Dwyer J, Ritter S, Benyus J (2012) Biomimicry resource handbook. Biomimicry 3.8, Missoula

    Google Scholar 

  • Benyus J (1997) Biomimicry: innovation inspired by nature. William Morrow, New York City

    Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A Math Phys Eng Sci 367(1893):1445–1486

    CrossRef  Google Scholar 

  • Bonser R, Vincent J (2007) Technology trajectories, innovation, and the growth of biomimetics. Proc Mech Eng Part C J Mech Eng Sci 221(10):1177–1180

    CrossRef  Google Scholar 

  • Chakrabarti A, Sarkar P, Leelavathamma B, Nataraju B (2005) A functional representation for aiding biomimetic and artificial inspiration of new ideas. AIEDAM 19:113–132

    CrossRef  Google Scholar 

  • Chandrasekaran B (1990) Design problem solving: a task analysis. AI Mag 11(4):59–71

    Google Scholar 

  • Chandrasekaran B, Josephson J, Benjamins V (1999) What are ontologies and why do we need them? IEEE Intell Syst 14(1):20–26

    CrossRef  Google Scholar 

  • Cross N (2006) Designerly ways of knowing. Springer, Berlin

    Google Scholar 

  • Deldin JM, Shuknecht M (2014) The AskNature database: enabling solutions in biomimetic design. In: Goel A, McAdams D, Stone R (eds) Biologically inspired design: computational methods and tools. Springer, Berlin

    Google Scholar 

  • Dym C, Brown DC (2012) Engineering design: representation and reasoning. Cambridge University Press, New York

    CrossRef  Google Scholar 

  • Eastman C, Newstetter W, McCracken M (eds) (2001) Design knowing and learning: design cognition in education. Elsevier, Amsterdam

    Google Scholar 

  • French M (1985) Conceptual design for engineers, 2nd edn. Springer, Berlin

    CrossRef  Google Scholar 

  • French M (1994) Invention and evolution: design in nature and engineering, 2nd edn. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Gebeshuber IC, Gruber P, Drack M (2009) A gaze into the crystal ball: biomimetics in the year 2059. Proc Inst Mech Eng Part C J Mech Eng Sci 223(12):2899–2918

    CrossRef  Google Scholar 

  • Goel A (1997) Design, analogy and creativity. IEEE Intell Syst 12(3):62–70

    MathSciNet  Google Scholar 

  • Goel A (2013a) Biologically inspired design: a new program for computational sustainability. IEEE Intell Syst 28(3):80–84

    CrossRef  Google Scholar 

  • Goel A (2013b) A 30-year case study and 15 principles: implications of an artificial intelligence methodology for functional modeling. AI EDAM 27(3):203–215

    Google Scholar 

  • Goel A, McAdams D, Stone R (eds) (2014) Biologically inspired design: computational methods and tools. Springer, London

    Google Scholar 

  • Goel A, Creeden B, Kumble M, Salunke S, Shetty A, Wiltgen B (2015a) Using watson for enhancing human-computer co-creativity. In: Proceedings of AAAI 2015 fall symposium on cognitive assistance, Arlington, VA, November

    Google Scholar 

  • Goel A, Zhang G, Wiltgen B, Zhang Y, Vattam S, Yen J (2015b) On the benefits of digital libraries of case studies of analogical design: documentation, access, analysis and learning. AIEDAM 29(2):215–227

    CrossRef  Google Scholar 

  • Kannengiesser U, Gero J (2015) Is designing independent of domain? Comparing models of engineering, software and service design. Res Eng Des 26(3):253–275

    CrossRef  Google Scholar 

  • Lepora N, Verschure P, Prescott T (2013) The state of the art in biomimetics. Bioinspir Biomim 8(1)

    Google Scholar 

  • Nagel J (2013) A Thesarus for biologically inspired design. In: Goel, McAdams & Stone (eds) Biologically inspired design: computational methods and tools

    Google Scholar 

  • Nagel J, Stone R (2010) A computational approach to biologically inspired design. AIEDAM 26(2):161–176

    CrossRef  Google Scholar 

  • Shu L, Ueda K, Chiu I, Cheong H (2011) Biologically inspired design. Keynote Paper. CIRP Ann Manuf Technol 60(2)

    Google Scholar 

  • Simon H (1996) Sciences of the artificial, 3rd edn. MIT Press, Cambridge

    Google Scholar 

  • Srinivasan V, Chakrabarti A (2010). An integrated model of designing. ASME J Comput Inf JCISE 10(3)

    Google Scholar 

  • Turner J (2007) The Tinkerer’s accomplice: how design emerges from life itself. Harvard University Press, Massachusetts

    CrossRef  Google Scholar 

  • Turner J, Soar R (2008) Beyond biomimicry: what termites can tell us about realizing the living building. In: Proceedings of 1st international conference on industrialized intelligent construction, pp 221–237

    Google Scholar 

  • Vattam S, Helms M, Goel A (2007) Biologically inspired innovation in engineering design: a cognitive study. Technical Report, GIT-GVU-07-07

    Google Scholar 

  • Vermass P (2013) The coexistence of engineering meanings of function: four responses and their methodological implications. AIEDAM 27:191–201

    CrossRef  Google Scholar 

  • Vincent J, Man D (2002) Systematic technology transfer from biology to engineering. Philos Trans R Soc A Math Phys Eng Sci 360(1791):159–173

    CrossRef  Google Scholar 

  • Vincent J, Bogatyreva O, Bogatyrev N, Bowyer A, Pahl A (2006) Biomimetics: its practice and theory. J R Soc Interface 3:471–482

    CrossRef  Google Scholar 

  • Vogel S (2000) Cat’s paws and catapults: mechanical worlds of nature and people. W.W. Norton and Company, New York City

    Google Scholar 

  • von Gleich A, Pade C, Petschow U, Pissarskoi E (2010) Potentials and trends in biomimetics. Springer, Berlin

    CrossRef  Google Scholar 

  • Weiler C, Goel A (2015) From mitochondria to water harvesting: a case study in biologically inspired design. IEEE Potentials 34(2):38–43

    CrossRef  Google Scholar 

  • Yen J, Weissburg M, Helms M, Goel A (2011) Biologically inspired design: a tool for interdisciplinary education. In: Bar-Cohen Y (ed) Biomimetics: nature-based innovation. Taylor & Francis, Boca Raton

    Google Scholar 

  • Yen J, Helms M, Goel A, Tovey C, Weissburg M (2014) Adaptive evolution of teaching practices in biologically inspired design. In: Goel A, McAdams D, Stone R (eds) Biologically inspired design: computational methods and tools. Springer, London

    Google Scholar 

Download references

Acknowledgements

We are grateful to the developers of the Design Study Library, including Gongbo Zhang, Bryan Wiltgen, Swaroop Vattam, and Yuqi Zhang. We are especially grateful to Professor Jeannette Yen, the primary instructor of the Georgia Tech ME/ISyE/MSE/BME/BIOL 4740 class from 2006 through 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Goel, A.K., Tuchez, C., Hancock, W., Frazer, K. (2017). Is Biologically Inspired Design Domain Independent?. In: Gero, J. (eds) Design Computing and Cognition '16. Springer, Cham. https://doi.org/10.1007/978-3-319-44989-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44989-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44988-3

  • Online ISBN: 978-3-319-44989-0

  • eBook Packages: EngineeringEngineering (R0)