Skip to main content

Color in the Cortex

  • Chapter
  • First Online:
Human Color Vision

Part of the book series: Springer Series in Vision Research ((SSVR,volume 5))

Abstract

We begin with a discussion of the role of human color vision, asking what value the possession of color vision adds to the perception of the natural scene, both in terms of our ability to see color differences (contrast) and in color identification. We then consider the psychophysical properties of cortical color vision and what they reveal about its use in determining shape and form. We pit against each other different models accounting for how achromatic (luminance) contrast and color contrast may be linked in the determination of shape, comparing a coloring book model, in which color plays only a subordinate or minor role, an intrinsic images model in which color contrast makes an independent contribution, and an integration model in which color and luminance contrast both provide cue-invariant form information to color–luminance shape detectors. These models are also interpreted in the light of what we know about the physiological basis of color vision through primate single cell recordings, particularly in area V1. Finally, we discuss what has been revealed about human color vision in V1 and extra striate cortex from fMRI studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vorobyev M. Ecology and evolution of primate colour vision. Clin Exp Optom. 2004;87(4–5):230–8.

    Article  PubMed  Google Scholar 

  2. Nathans J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron. 1999;24(2):299–312.

    Article  CAS  PubMed  Google Scholar 

  3. Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986;232(4747):193–202.

    Article  CAS  PubMed  Google Scholar 

  4. Mollon JD, Bowmaker JK, Jacobs GH. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci. 1984;222(1228):373–99.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs GH. Primate color vision: a comparative perspective. Vis Neurosci. 2008;25(5–6):619–33. doi:10.1017/S0952523808080760. S0952523808080760 [pii].

    Article  PubMed  Google Scholar 

  6. Deeb SS. Genetics of variation in human color vision and the retinal cone mosaic. Curr Opin Genet Dev. 2006;16(3):301–7. doi:10.1016/j.gde.2006.04.002.

    Article  CAS  PubMed  Google Scholar 

  7. Mollon JD. “Tho’ she kneel’d in that place where they grew…”. The uses and origins of primate colour vision. J Exp Biol. 1989;146:21–38.

    CAS  PubMed  Google Scholar 

  8. Regan BC, Julliot C, Simmen B, Vienot F, Charles-Dominique P, Mollon JD. Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond B Biol Sci. 2001;356(1407):229–83. doi:10.1098/rstb.2000.0773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barlow HB. The Ferrier Lecture, 1980. Critical limiting factors in the design of the eye and visual cortex. Proc R Soc Lond B Biol Sci. 1981;212(1186):1–34.

    Article  CAS  PubMed  Google Scholar 

  10. Koffka K. Principles of Gestalt psychology. New York: Harcourt, Brace and Company; 1935.

    Google Scholar 

  11. Morgan MJ, Adam A, Mollon JD. Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc Biol Sci. 1992;248(1323):291–5. doi:10.1098/rspb.1992.0074.

    Article  CAS  PubMed  Google Scholar 

  12. McIlhagga WH, Mullen KT. Contour integration with colour and luminance contrast. Vision Res. 1996;36(9):1265–79.

    Article  CAS  PubMed  Google Scholar 

  13. Shevell SK, Kingdom FA. Color in complex scenes. Annu Rev Psychol. 2008;59:143–66. doi:10.1146/annurev.psych.59.103006.093619.

    Article  PubMed  Google Scholar 

  14. Hansen T, Gegenfurtner KR. Independence of color and luminance edges in natural scenes. Vis Neurosci. 2009;26(1):35–49. doi:10.1017/S0952523808080796.

    Article  PubMed  Google Scholar 

  15. Kingdom FA. Color brings relief to human vision. Nat Neurosci. 2003;6(6):641–4. doi:10.1038/nn1060.

    Article  CAS  PubMed  Google Scholar 

  16. Kingdom FA, Beauce C, Hunter L. Colour vision brings clarity to shadows. Perception. 2004;33(8):907–14.

    Article  PubMed  Google Scholar 

  17. Davidoff J, Walsh V, Wagemans J. Higher-level cortical processing of colour. Acta Psychol (Amst). 1997;97(1):1–6.

    Article  CAS  Google Scholar 

  18. Woodward TS, Dixon MJ, Mullen KT, Christensen KM, Bub DN. Analysis of errors in color agnosia: a single case study. Neurocase. 1999;5:95–108.

    Article  Google Scholar 

  19. Victor JD, Maiese K, Shapley R, Sidtis J, Gazzaniga MS. Acquired central dyschromatopsia: analysis of a case with preservation of color discrimination. Clin Vis Sci. 1989;4(3):183–96.

    Google Scholar 

  20. Davidoff J. Cognition through color. Cambridge: The MIT Press; 1991.

    Google Scholar 

  21. Luzzatti C, Davidoff J. Impaired retrieval of object-colour knowledge with preserved colour naming. Neuropsychologia. 1994;32(8):933–50.

    Article  CAS  PubMed  Google Scholar 

  22. Sandell JH, Gross CG, Bornstein MH. Color categories in macaques. J Comp Physiol Psychol. 1979;93(4):626–35.

    Article  CAS  PubMed  Google Scholar 

  23. Berlin B, Kay P. Basic colour terms. Berkeley: University of California Press; 1969.

    Google Scholar 

  24. Uchikawa K, Boynton RM. Categorical color perception of Japanese observers: comparison with that of Americans. Vision Res. 1987;27(10):1825–33.

    Article  CAS  PubMed  Google Scholar 

  25. Guest S, Van Laar D. The structure of colour naming space. Vision Res. 2000;40(7):723–34.

    Article  CAS  PubMed  Google Scholar 

  26. Davidoff J, Davies I, Roberson D. Colour categories in a stone-age tribe. Nature. 1999;398:203–4.

    Article  CAS  PubMed  Google Scholar 

  27. Petzold A, Sharpe LT. Hue memory and discrimination in young children. Vision Res. 1998;38(23):3759–72.

    Article  CAS  PubMed  Google Scholar 

  28. Raskin L, Maital S, Bornstein MH. Perceptual categorization of color: a life-span study. Psychol Res. 1983;45:135–45.

    Article  CAS  PubMed  Google Scholar 

  29. Bornstein MH. On the development of color naming in young children: data and theory. Brain Lang. 1985;26(1):72–93.

    Article  CAS  PubMed  Google Scholar 

  30. Pitchford NJ, Mullen KT. Is the acquisition of basic-colour terms in young children constrained? Perception. 2002;31(11):1349–70.

    Article  PubMed  Google Scholar 

  31. Morrone MC, Burr DC, Fiorentini A. Development of infant contrast sensitivity to chromatic stimuli. Vision Res. 1993;33(17):2535–52.

    Article  CAS  PubMed  Google Scholar 

  32. Pitchford NJ, Mullen KT. The role of perception, language, and preference in the developmental acquisition of basic color terms. J Exp Child Psychol. 2005;90(4):275–302. doi:10.1016/j.jecp.2004.12.005.

    Article  PubMed  Google Scholar 

  33. Allen D, Banks MS, Norcia AM. Does chromatic sensitivity develop more slowly than luminance sensitivity. Vision Res. 1993;33(17):2553–62.

    Article  CAS  PubMed  Google Scholar 

  34. Teller D. Spatial and temporal aspects of infant color vision. Vision Res. 1998;38:3275–82.

    Article  CAS  PubMed  Google Scholar 

  35. Kelly DH. Spatiotemporal variation of chromatic and achromatic contrast thresholds. J Opt Soc Am. 1983;73(6):742–50.

    Article  CAS  PubMed  Google Scholar 

  36. Mullen KT. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J Physiol. 1985;359:381–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sekiguchi N, Williams DR, Brainard DH. Aberration-free measurements of the visibility of isoluminant gratings. J Opt Soc Am A Opt Image Sci Vis. 1993;10(10):2105–17.

    Article  CAS  PubMed  Google Scholar 

  38. Chaparro A, Stromeyer III CF, Huang EP, Kronauer RE, Eskew Jr RT. Colour is what the eye sees best. Nature. 1993;361(6410):348–50. doi:10.1038/361348a0.

    Article  CAS  PubMed  Google Scholar 

  39. Watson AB, Barlow HB, Robson JG. What does the eye see best? Nature. 1983;302(5907):419–22.

    Article  CAS  PubMed  Google Scholar 

  40. Wolf K. Visual ecology: coloured fruit is what the eye sees best. Curr Biol. 2002;12(7):R253–5.

    Article  CAS  PubMed  Google Scholar 

  41. Parraga CA, Troscianko T, Tolhurst DJ. Spatiochromatic properties of natural images and human vision. Curr Biol. 2002;12(6):483–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bradley A, Zang L, Thibos LN. Failures of isoluminance caused by ocular chromatic aberration. Appl Optics. 1992;31:3657–67.

    Article  CAS  Google Scholar 

  43. Gregory RL, Heard PF. Color contrast without luminance contrast. J Physiol London. 1982;327:P12–P3.

    Google Scholar 

  44. Livingstone MS, Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci. 1984;4(1):309–56.

    CAS  PubMed  Google Scholar 

  45. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987;7(11):3416–68.

    CAS  PubMed  Google Scholar 

  46. McIlhagga W, Mullen KT. The contribution of colour to contour detection. In: Dickenson CM, editor. Colour Vision Research: Proceedings of the John Dalton Conference. London: Taylor & Francis; 1997. p. 187–96.

    Google Scholar 

  47. Barrow HG, Tenenbaum JM. Recovering intrinsic scene characteristics from images. In: Hanson AaR A, Riseman E, editors. Computer vision systems. New York: Academic; 1978.

    Google Scholar 

  48. Rentzeperis I, Nikolaev AR, Kiper DC, van Leeuwen C. Distributed processing of color and form in the visual cortex. Front Psychol. 2014;5:932. doi:10.3389/fpsyg.2014.00932.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shapley R, Hawken MJ. Color in the cortex: single- and double-opponent cells. Vision Res. 2011;51(7):701–17. doi:10.1016/j.visres.2011.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Johnson EN, Hawken MJ, Shapley R. The orientation selectivity of color-responsive neurons in macaque V1. J Neurosci. 2008;28(32):8096–106. doi:10.1523/JNEUROSCI.1404-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson EN, Hawken MJ, Shapley R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci. 2001;4(4):409–16. doi:10.1038/86061.

    Article  CAS  PubMed  Google Scholar 

  52. Losada MA, Mullen KT. The spatial tuning of chromatic mechanisms identified by simultaneous masking. Vision Res. 1994;34(3):331–41.

    Article  CAS  PubMed  Google Scholar 

  53. Mullen KT, Losada MA. The spatial tuning of color and luminance peripheral vision measured with notch filtered noise masking. Vision Res. 1999;39(4):721–31.

    Article  CAS  PubMed  Google Scholar 

  54. Humanski RA, Wilson HR. Spatial frequency mechanisms with short-wavelength-sensitive cone inputs. Vision Res. 1992;32(3):549–60.

    Article  CAS  PubMed  Google Scholar 

  55. Bradley A, Switkes E, De Valois K. Orientation and spatial frequency selectivity of adaptation to color and luminance gratings. Vision Res. 1988;28(7):841–56.

    Article  CAS  PubMed  Google Scholar 

  56. Losada MA, Mullen KT. Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking. J Opt Soc Am A. 1995;12(2):250–60.

    Article  CAS  Google Scholar 

  57. McIlhagga W, Mullen KT. Classification images of chromatic edge detectors in human vision (abstract). Perception, 2015;44:289.

    Google Scholar 

  58. Reisbeck TE, Gegenfurtner KR. Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli. Vision Res. 1998;38(8):1105–17.

    Article  CAS  PubMed  Google Scholar 

  59. Wuerger SM, Morgan MJ. Input of long- and middle-wavelength-sensitive cones to orientation discrimination. J Opt Soc Am A Opt Image Sci Vis. 1999;16(3):436–42. doi:10.1364/Josaa.16.000436.

    Article  Google Scholar 

  60. Webster MA, De Valois KK, Switkes E. Orientation and spatial-frequency discrimination for luminance and chromatic gratings. J Opt Soc Am A. 1990;7(6):1034–49.

    Article  CAS  PubMed  Google Scholar 

  61. Pandey Vimal RL. Orientation tuning of the spatial-frequency-tuned mechanisms of the red-green channel. J Opt Soc Am A Opt Image Sci Vis. 1997;14(10):2622–32.

    Article  CAS  PubMed  Google Scholar 

  62. Beaudot WH, Mullen KT. Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise. Vision Res. 2005;45(6):687–96. doi:10.1016/j.visres.2004.09.023. S0042-6989(04)00487-0 [pii].

    Article  PubMed  Google Scholar 

  63. Humanski RA, Wilson HR. Spatial-frequency adaptation: evidence for a multiple-channel model of short-wavelength-sensitive-cone spatial vision. Vision Res. 1993;33(5–6):665–75.

    Article  CAS  PubMed  Google Scholar 

  64. Gheiratmand M, Meese TS, Mullen KT. Blobs versus bars: psychophysical evidence supports two types of orientation response in human color vision. J Vis. 2013;13(1). doi:10.1167/13.1.2

    Google Scholar 

  65. Gheiratmand M, Mullen KT. Orientation tuning in human colour vision at detection threshold. Sci Rep. 2014;4:4285. doi:10.1038/srep04285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Clifford CW, Spehar B, Solomon SG, Martin PR, Zaidi Q. Interactions between color and luminance in the perception of orientation. J Vis. 2003;3(2):106–15. doi:10.1167/3.2.1.

    Article  PubMed  Google Scholar 

  67. Engel SA. Adaptation of oriented and unoriented color-selective neurons in human visual areas. Neuron. 2005;45(4):613–23. doi:10.1016/j.neuron.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  68. Mullen KT, Beaudot WH, McIlhagga WH. Contour integration in color vision: a common process for the blue-yellow, red-green and luminance mechanisms? Vision Res. 2000;40(6):639–55.

    Article  CAS  PubMed  Google Scholar 

  69. Mullen KT, Beaudot WH. Comparison of color and luminance vision on a global shape discrimination task. Vision Res. 2002;42(5):565–75.

    Article  PubMed  Google Scholar 

  70. Mandelli MJ, Kiper DC. The local and global processing of chromatic Glass patterns. J Vis. 2005;5(5):405–16. doi:10.1167/5.5.2.

    Article  PubMed  Google Scholar 

  71. Cardinal KS, Kiper DC. The detection of colored Glass patterns. J Vis. 2003;3(3):199–208. doi:10.1167/3.3.2.

    Article  PubMed  Google Scholar 

  72. Mullen KT, Beaudot WH, Ivanov IV. Evidence that global processing does not limit thresholds for RF shape discrimination. J Vis. 2011;11(3):6.1–21. doi:10.1167/11.3.6. 11.3.6 [pii].

    Article  Google Scholar 

  73. Gegenfurtner KR, Kiper DC. Contrast detection in luminance and chromatic noise. J Opt Soc Am A. 1992;9(11):1880–8.

    Article  CAS  PubMed  Google Scholar 

  74. Sankeralli MJ, Mullen KT. Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. J Opt Soc Am A. 1997;14(10):2633–46.

    Article  CAS  Google Scholar 

  75. Giulianini F, Eskew Jr RT. Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Res. 1998;38(24):3913–26.

    Article  CAS  PubMed  Google Scholar 

  76. Sankeralli MJ, Mullen KT. Bipolar or rectified chromatic detection mechanisms? Vis Neurosci. 2001;18(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  77. Stromeyer III CF, Cole GR, Kronauer RE. Second-site adaptation in the red-green chromatic pathways. Vision Res. 1985;25(2):219–37.

    Article  PubMed  Google Scholar 

  78. King-Smith PE, Vingrys AJ, Benes SC. Visual thresholds measured with color video monitors. Color Res Appl. 1987;12(2):73–80.

    Article  Google Scholar 

  79. Cole GR, Hine T, McIlhagga W. Detection mechanisms in L-, M-, and S-cone contrast space. J Opt Soc Am A. 1993;10(1):38–51.

    Article  CAS  PubMed  Google Scholar 

  80. Sankeralli MJ, Mullen KT. Estimation of the L-, M- and S-cone weights of the post-receptoral detection mechanisms. J Opt Soc Am A. 1996;13:906–15.

    Article  Google Scholar 

  81. Chaparro A, Stromeyer III CF, Kronauer RE, Eskew Jr RT. Separable red-green and luminance detectors for small flashes. Vision Res. 1994;34(6):751–62.

    Article  CAS  PubMed  Google Scholar 

  82. Eskew RT, McLellan JS, Giulianini F. Chromatic detection and discrimination. In: Gegenfurtner KR, Sharpe LT, editors. Color vision: from molecular genetics to perception. Cambridge: Cambridge University Press; 1999. p. 345–68.

    Google Scholar 

  83. Mullen KT, Sankeralli MJ. Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation. Vision Res. 1999;39(4):733–45.

    Article  CAS  PubMed  Google Scholar 

  84. Mullen KT, Cropper SJ, Losada MA. Absence of linear subthreshold summation between red-green and luminance mechanisms over a wide range of spatio-temporal conditions. Vision Res. 1997;37(9):1157–65.

    Article  CAS  PubMed  Google Scholar 

  85. Switkes E, Bradley A, Devalois KK. Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. J Opt Soc Am A Opt Image Sci Vis. 1988;5(7):1149–62. doi:10.1364/Josaa.5.001149.

    Article  CAS  Google Scholar 

  86. Mullen KT, Kim YJ, Gheiratmand M. Contrast normalization in colour vision: the effect of luminance contrast on colour contrast detection. Sci Rep. 2014;4:7350. doi:10.1038/srep07350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hass CA, Horwitz GD. V1 mechanisms underlying chromatic contrast detection. J Neurophysiol. 2013. doi:10.1152/jn.00671.2012. jn.00671.2012 [pii].

    PubMed Central  Google Scholar 

  88. Cole GR, Stromeyer III CF, Kronauer RE. Visual interactions with luminance and chromatic stimuli. J Opt Soc Am A. 1990;7(1):128–40.

    Article  CAS  PubMed  Google Scholar 

  89. Eskew Jr RT, Stromeyer III CF, Picotte CJ, Kronauer RE. Detection uncertainty and the facilitation of chromatic detection by luminance contours. J Opt Soc Am A. 1991;8(2):394–403.

    Article  PubMed  Google Scholar 

  90. De Valois KK, Switkes E. Simultaneous masking interactions between chromatic and luminance gratings. J Opt Soc Am. 1983;73(1):11–8.

    Article  PubMed  Google Scholar 

  91. Mullen KT, Losada MA. Evidence for separate pathways for color and luminance detection mechanisms. J Opt Soc Am A. 1994;11(12):3136–51.

    Article  CAS  Google Scholar 

  92. Horwitz GD, Chichilnisky EJ, Albright TD. Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. J Neurophysiol. 2005;93(4):2263–78. doi:10.1152/jn.00743.2004.

    Article  PubMed  Google Scholar 

  93. De Valois RL. Analysis and coding of color vision in the primate visual system. Cold Spring Harb Symp Quant Biol. 1965;30:567–79.

    Article  PubMed  Google Scholar 

  94. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(1):215–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schiller PH, Finlay BL, Volman SF. Quantitative studies of single-cell properties in monkey striate cortex. V. Multivariate statistical analyses and models. J Neurophysiol. 1976;39(6):1362–74.

    CAS  PubMed  Google Scholar 

  96. Conway BR. Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J Neurosci. 2001;21(8):2768–83.

    CAS  PubMed  Google Scholar 

  97. Conway BR, Hubel DH, Livingstone MS. Color contrast in macaque V1. Cereb Cortex. 2002;12(9):915–25.

    Article  PubMed  Google Scholar 

  98. Conway BR, Livingstone MS. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J Neurosci. 2006;26(42):10826–46. doi:10.1523/JNEUROSCI.2091-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zeki S. Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience. 1983;9(4):741–65.

    Article  CAS  PubMed  Google Scholar 

  100. Zeki S. Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience. 1983;9(4):767–81.

    Article  CAS  PubMed  Google Scholar 

  101. Shapley R, Hawken M, Johnson E. Color in the primary visual cortex. In: Werner JS, Chalupa LM, editors. The new visual neurosciences. Cambridge: The MIT Press; 2014. p. 569–86.

    Google Scholar 

  102. Friedman HS, Zhou H, von der Heydt R. The coding of uniform colour figures in monkey visual cortex. J Physiol. 2003;548(Pt 2):593–613. doi:10.1113/jphysiol.2002.033555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Johnson EN, Hawken MJ, Shapley R. Cone inputs in macaque primary visual cortex. J Neurophysiol. 2004;91(6):2501–14. doi:10.1152/jn.01043.2003.

    Article  PubMed  Google Scholar 

  104. Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci. 1995;15(3 Pt 1):1808–18.

    CAS  PubMed  Google Scholar 

  105. Thorell LG, De Valois RL, Albrecht DG. Spatial mapping of monkey V1 cells with pure color and luminance stimuli. Vision Res. 1984;24(7):751–69.

    Article  CAS  PubMed  Google Scholar 

  106. Estevez O, Spekreijse H. The “silent substitution” method in visual research. Vision Res. 1982;22(6):681–91.

    Article  CAS  PubMed  Google Scholar 

  107. Reid RC, Shapley RM. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature. 1992;356(6371):716–8. doi:10.1038/356716a0.

    Article  CAS  PubMed  Google Scholar 

  108. Reid RC, Shapley RM. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J Neurosci. 2002;22(14):6158–75. doi:20026444.

    CAS  PubMed  Google Scholar 

  109. Ringach DL, Sapiro G, Shapley R. A subspace reverse-correlation technique for the study of visual neurons. Vision Res. 1997;37(17):2455–64.

    Article  CAS  PubMed  Google Scholar 

  110. Derrington AM, Krauskopf J, Lennie P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol. 1984;357:241–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hanazawa A, Komatsu H, Murakami I. Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey. Eur J Neurosci. 2000;12(5):1753–63.

    Article  CAS  PubMed  Google Scholar 

  112. Lennie P, Krauskopf J, Sclar G. Chromatic mechanisms in striate cortex of macaque. J Neurosci. 1990;10(2):649–69.

    CAS  PubMed  Google Scholar 

  113. Wachtler T, Sejnowski TJ, Albright TD. Representation of color stimuli in awake macaque primary visual cortex. Neuron. 2003;37(4):681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Horwitz GD, Hass CA. Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing. Nat Neurosci. 2012;15(6):913–9. doi:10.1038/nn.3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wiesel TN, Hubel DH. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966;29(6):1115–56.

    CAS  PubMed  Google Scholar 

  116. Solomon SG, Lennie P. Chromatic gain controls in visual cortical neurons. J Neurosci. 2005;25(19):4779–92. doi:10.1523/JNEUROSCI.5316-04.2005.

    Article  CAS  PubMed  Google Scholar 

  117. Schluppeck D, Engel SA. Color opponent neurons in V1: a review and model reconciling results from imaging and single-unit recording. J Vis. 2002;2(6):480–92. doi:10.1167/2.6.5.

    Article  PubMed  Google Scholar 

  118. Daw NW. Goldfish retina: organization for simultaneous color contrast. Science. 1967;158(3803):942–4.

    Article  CAS  PubMed  Google Scholar 

  119. Yang KF, Gao SB, Guo CF, Li CY, Li YJ. Boundary detection using double-opponency and spatial sparseness constraint. IEEE Trans Image Process. 2015;24(8):2565–78. doi:10.1109/Tip.2015.2425538. Artn 2565.

    Article  Google Scholar 

  120. Mollen J. Monge: the Verriest lecture, Lyon, July 2005. Vis Neurosci. 2006;23:297–309.

    Article  Google Scholar 

  121. Xing D, Ouni A, Chen S, Sahmoud H, Gordon J, Shapley R. Brightness-color interactions in human early visual cortex. J Neurosci. 2015;35(5):2226–32. doi:10.1523/JNEUROSCI.3740-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bushnell BN, Harding PJ, Kosai Y, Bair W, Pasupathy A. Equiluminance cells in visual cortical area v4. J Neurosci. 2011;31(35):12398–412. doi:10.1523/JNEUROSCI.1890-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Conway BR, Moeller S, Tsao DY. Specialized color modules in macaque extrastriate cortex. Neuron. 2007;56(3):560–73. doi:10.1016/j.neuron.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  124. Li M, Liu F, Juusola M, Tang S. Perceptual color map in macaque visual area V4. J Neurosci. 2014;34(1):202–17. doi:10.1523/JNEUROSCI.4549-12.2014.

    Article  PubMed  CAS  Google Scholar 

  125. Namima T, Yasuda M, Banno T, Okazawa G, Komatsu H. Effects of luminance contrast on the color selectivity of neurons in the macaque area v4 and inferior temporal cortex. J Neurosci. 2014;34(45):14934–47. doi:10.1523/JNEUROSCI.2289-14.2014.

    Article  CAS  PubMed  Google Scholar 

  126. Gao SB, Yang KF, Li CY, Li YJ. A color constancy model with double-opponency mechanisms. IEEE Int Conf Comput Vis. 2013;2013:929–36. doi:10.1109/Iccv.2013.119.

    Google Scholar 

  127. Gao SB, Yang KF, Li CY, Li YJ. Color constancy using double-opponency. IEEE Trans Pattern Anal Mach Intell. 2015;37(10):1973–85. doi:10.1109/TPAMI.2015.2396053.

    Article  PubMed  Google Scholar 

  128. Dean P. Visual cortex ablation and thresholds for successively presented stimuli in rhesus monkeys: II. Hue. Exp Brain Res. 1979;35(1):69–83.

    Article  CAS  PubMed  Google Scholar 

  129. Huxlin KR, Saunders RC, Marchionini D, Pham HA, Merigan WH. Perceptual deficits after lesions of inferotemporal cortex in macaques. Cereb Cortex. 2000;10(7):671–83.

    Article  CAS  PubMed  Google Scholar 

  130. Komatsu H, Ideura Y, Kaji S, Yamane S. Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. J Neurosci. 1992;12(2):408–24.

    CAS  PubMed  Google Scholar 

  131. Koida K, Komatsu H. Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex. Nat Neurosci. 2007;10(1):108–16. doi:10.1038/nn1823.

    Article  CAS  PubMed  Google Scholar 

  132. Beauchamp MS, Haxby JV, Jennings JE, DeYoe EA. An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb Cortex. 1999;9(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  133. Vanni S, Henriksson L, Viikari M, James AC. Retinotopic distribution of chromatic responses in human primary visual cortex. Eur J Neurosci. 2006;24(6):1821–31. doi:10.1111/j.1460-9568.2006.05070.x.

    Article  CAS  PubMed  Google Scholar 

  134. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, et al. fMRI of human visual cortex. Nature. 1994;369(6481):525. doi:10.1038/369525a0.

    Article  CAS  PubMed  Google Scholar 

  135. Wade A, Augath M, Logothetis N, Wandell B. fMRI measurements of color in macaque and human. J Vis. 2008;8(10):6.1–19. doi:10.1167/8.10.6.

    Article  Google Scholar 

  136. Liu J, Wandell BA. Specializations for chromatic and temporal signals in human visual cortex. J Neurosci. 2005;25(13):3459–68.

    Article  CAS  PubMed  Google Scholar 

  137. Zeki S, McKeefry DJ, Bartels A, Frackowiak RS. Has a new color area been discovered? Nat Neurosci. 1998;1(5):335–6. doi:10.1038/1537.

    Article  CAS  PubMed  Google Scholar 

  138. Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RB. Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci. 1998;1(3):235–41. doi:10.1038/681.

    Article  CAS  PubMed  Google Scholar 

  139. Kleinschmidt A, Lee BB, Requardt M, Frahm J. Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation. Exp Brain Res. 1996;110(2):279–88.

    Article  CAS  PubMed  Google Scholar 

  140. Parkes LM, Marsman JB, Oxley DC, Goulermas JY, Wuerger SM. Multivoxel fMRI analysis of color tuning in human primary visual cortex. J Vis. 2009;9(1):1–13. doi:10.1167/9.1.1.

    Article  PubMed  Google Scholar 

  141. Mullen KT, Thompson B, Hess RF. Responses of the human LGN to different temporal frequencies for achromatic, L/M cone opponent and S-cone opponent stimuli measured with high field fMRI. J Vis. 2008;8(6):957a.

    Google Scholar 

  142. D’Souza DV, Auer T, Strasburger H, Frahm J, Lee BB. Temporal frequency and chromatic processing in humans: an fMRI study of the cortical visual areas. J Vis. 2011;11(8). doi:10.1167/11.8.8. 11.8.8 [pii]

    Google Scholar 

  143. Mullen KT, Thompson B, Hess RF. Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study. J Vis. 2010;10(13):1–19. doi:10.1167/10.13.13. 10.13.13 [pii].

    Article  Google Scholar 

  144. Mullen KT, Dumoulin SO, McMahon KL, de Zubicaray GI, Hess RF. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. Eur J Neurosci. 2007;25(2):491–502. doi:10.1111/j.1460-9568.2007.05302.x

    Article  PubMed  Google Scholar 

  145. Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci. 1995;15(4):3215–30.

    CAS  PubMed  Google Scholar 

  146. Seidemann E, Poirson AB, Wandell BA, Newsome WT. Color signals in area MT of the macaque monkey. Neuron. 1999;24(4):911–7.

    Article  CAS  PubMed  Google Scholar 

  147. Bartels A, Zeki S. The architecture of the colour centre in the human visual brain: new results and a review. Eur J Neurosci. 2000;12(1):172–93.

    Article  CAS  PubMed  Google Scholar 

  148. McKeefry DJ, Zeki S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain. 1997;120(Pt 12):2229–42.

    Article  PubMed  Google Scholar 

  149. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS. A direct demonstration of functional specialization in human visual cortex. J Neurosci. 1991;11(3):641–9.

    CAS  PubMed  Google Scholar 

  150. Lueck CJ, Zeki S, Friston KJ, Deiber MP, Cope P, Cunningham VJ, et al. The colour centre in the cerebral cortex of man. Nature. 1989;340(6232):386–9. doi:10.1038/340386a0.

    Article  CAS  PubMed  Google Scholar 

  151. Lafer-Sousa R, Conway BR. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci. 2013;16(12):1870–8. doi:10.1038/nn.3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brewer AA, Liu J, Wade AR, Wandell BA. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat Neurosci. 2005;8(8):1102–9. doi:10.1038/nn1507.

    Article  CAS  PubMed  Google Scholar 

  153. Wandell BA, Brewer AA, Dougherty RF. Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):693–707. doi:10.1098/rstb.2005.1628.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Engel SA, Furmanski CS. Selective adaptation to color contrast in human primary visual cortex. J Neurosci. 2001;21(11):3949–54.

    CAS  PubMed  Google Scholar 

  155. Mullen KT, Chang DH, Hess RF. The selectivity of responses to red-green color and achromatic contrast in the human visual cortex: an fMRI adaptation study. Eur J Neurosci. 2015;42(11):2923–33.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bannert MM, Bartels A. Decoding the yellow of a gray banana. Curr Biol. 2013;23(22):2268–72. doi:10.1016/j.cub.2013.09.016.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contributions to figure design and preparation of Irem Onay (Figs. 7.1 and 7.3), William McIlhagga (Fig. 7.2), and Mina Gheiratmand (Fig. 7.5). We would like to thank Noah Snyder-Mackler for the gelada photograph, Rachel A. Hovel for the salmon photograph, both in Fig. 7.3, and Martin LaBar via Flickr for the berry photograph in Fig. 7.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth N. Johnson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnson, E.N., Mullen, K.T. (2016). Color in the Cortex. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_7

Download citation

Publish with us

Policies and ethics