Skip to main content

Enforcing Structure on Temporal Sequences: The Allen Constraint

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2016)

Abstract

Recent applications of constraint programming to entertainment, e.g., music or video, call for global constraints describing the structure of temporal sequences. A typical constraint approach is to model each temporal event in the sequence with one variable, and to state constraints on these indexed variables. However, this approach hampers the statement of constraints involving events based on temporal position, since the position depends on preceding events rather than on the index. We introduce Allen, a global constraint relating event indexes with temporal positions. Allen maintains two set-variables: the set of events occurring at a position defined by an Allen relation, and the set of their indexes. These variables enable defining structural and temporal synchronization properties that cannot be stated on indexed variables. We show that a model based on a local scheduling approach does not solve the problem, even for very small instances, highlighting the need for complex filtering. We present a model that uses Multi-valued Decision Diagrams (MDDs) to compile the Allen constraint. We show that this model can be used to state and solve two complex musical tasks: audio track synchronization and musical score generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    OR Tools is open source and available at https://github.com/google/or-tools.

  2. 2.

    Video available online, https://www.youtube.com/watch?v=buXqNqBFd6E, examples at seconds 140, 176, and 216.

References

  1. Derrien, A., Fages, J.-G., Petit, T., Prud’homme, C.: A global constraint for a tractable class of temporal optimization problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 105–120. Springer, Heidelberg (2015)

    Google Scholar 

  2. Galvane, Q., Christie, M., Lino, C., Ronfard, R.: Camera-on-rails: automated computation of constrained camera paths. In: ACM SIGGRAPH Conference on Motion in Games, Paris, France, November 2015

    Google Scholar 

  3. Galvane, Q., Ronfard, R., Lino, C., Christie, M.: Continuity editing for 3D animation. In: AAAI Conference on Artificial Intelligence. AAAI Press, Austin, January 2015

    Google Scholar 

  4. Berrani, S.A., Boukadida, M.H., Gros, P.: Constraint satisfaction programming for video summarization. In: IEEE International Symposium on Multimedia, Anaheim, California, United States. IEEE, December 2013

    Google Scholar 

  5. Dixon, S.: Onset detection revisited. In: Proceedings of the 9th International Conference on Digital Audio Effects, Citeseer, vol. 120, pp. 133–137 (2006)

    Google Scholar 

  6. Maestre, E., Ramírez, R., Kersten, S., Serra, X.: Expressive concatenative synthesis by reusing samples from real performance recordings. Comput. Music J. 33(4), 23–42 (2009)

    Article  Google Scholar 

  7. Nair, M.: On chebyshev-type inequalities for primes. AMM 89, 126–129 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  9. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Roy, P., Pachet, F.: Enforcing meter in finite-length markov sequences. In: des Jardins, M., Littman, M.L. (eds.) AAAI. AAAI Press (2013)

    Google Scholar 

  11. Papadopoulos, A., Pachet, F., Roy, P., Sakellariou, J.: Exact sampling for regular and markov constraints with belief propagation. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 341–350. Springer, Heidelberg (2015)

    Google Scholar 

  12. Puget, J.F.: PECOS: a high level constraint programming language. In: Proceedings of Singapore International Conference on Intelligent Systems, SPICIS 1992, pp. 137–142 (1992)

    Google Scholar 

  13. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Perez, G., Régin, J.C., Antipolis, U.N.S., Umr, I.S.: Efficient operations on MDDs for building constraint programming models. In: IJCAI International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, pp. 374–380 (2015)

    Google Scholar 

  15. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Heidelberg (2014)

    Google Scholar 

  16. Perez, G., Régin, J.C.: Relations between MDDs and Tuples and Dynamic Modifications of MDDs based constraints. arXiv preprint (2015). arXiv:1505.02552

  17. Gómez, E.: Tonal Description of Music Audio Signals. Ph.D. thesis, Universitat Pompeu Fabra (2006)

    Google Scholar 

  18. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Acknowledgment

This research is conducted within the Flow Machines project which received funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 291156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Roy, P., Perez, G., Régin, JC., Papadopoulos, A., Pachet, F., Marchini, M. (2016). Enforcing Structure on Temporal Sequences: The Allen Constraint. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics