A Constraint Programming Approach to Multi-Robot Task Allocation and Scheduling in Retirement Homes

  • Kyle E. C. Booth
  • Goldie Nejat
  • J. Christopher Beck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9892)

Abstract

We study the application of constraint programming (CP) to the planning and scheduling of multiple social robots interacting with residents in a retirement home. The robots autonomously organize and facilitate group and individual activities among residents. The application is a multi-robot task allocation and scheduling problem in which task plans must be determined that integrate with resident schedules. The problem involves reasoning about disjoint time windows, inter-schedule task dependencies, user and robot travel times, as well as robot energy levels. We propose mixed-integer programming (MIP) and CP approaches for this problem and investigate methods for improving our initial CP approach using symmetry breaking, variable ordering heuristics, and large neighbourhood search. We introduce a relaxed CP model for determining provable bounds on solution quality. Experiments indicate substantial superiority of the initial CP approach over MIP, and subsequent significant improvements in the CP approach through our manipulations. This work is one of the few, of which we are aware, that applies CP to multi-robot task allocation and scheduling problems. Our results demonstrate the promise of CP scheduling technology as a general optimization infrastructure for such problems.

Notes

Acknowledgment

The authors would like to thank the Natural Sciences & Engineering Research Council of Canada (NSERC), Dr. Robot Inc., and the Canada Research Chairs (CRC) Program.

References

  1. 1.
    De Luca, A.E., Bonacci, S., Giraldi, G.: Aging populations: the health and quality of life of the elderly. La Clinica Terapeutica 162(1), e13-8 (2010)Google Scholar
  2. 2.
    Francesca, C., Ana, L.-N., Jérôme, M., Frits, T.: OECD Help, Health Policy Studies Wanted? Providing, Paying for Long-Term Care: Providing and Paying for Long-Term Care, vol. 2011. OECD Publishing (2011)Google Scholar
  3. 3.
    Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte, L.: Socially sassistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Directors Assoc. 13(2), 114–120 (2012)CrossRefGoogle Scholar
  4. 4.
    Louie, W.-Y.G., Vaquero, T., Nejat, G., Beck, J.C.: An autonomous assistive robot for planning, scheduling and facilitating multi-user activities. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5292–5298. IEEE (2014)Google Scholar
  5. 5.
    Booth, K.E.C., Tran, T.T., Nejat, J.G., Beck, C.: Mixed-integer, constraint programming techniques for mobile robot task planning. Robot. Autom. Lett. 1(1), 500–507 (2016)CrossRefGoogle Scholar
  6. 6.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems, vol. 39. Springer Science & Business Media, US (2012)MATHGoogle Scholar
  7. 7.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  8. 8.
    Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Program. 96(1), 33–60 (2003)MathSciNetMATHGoogle Scholar
  9. 9.
    Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to single-mode scheduling problems. In: Proceedings MISTA 2007, Paris, pp. 276–284 (2007)Google Scholar
  12. 12.
    Parker, L.E.: L-alliance: task-oriented multi-robot learning in behavior-based systems. Adv. Robot. 11(4), 305–322 (1996)CrossRefGoogle Scholar
  13. 13.
    Botelho, S.C., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1234–1239. IEEE (1999)Google Scholar
  14. 14.
    Dias, M.B., Stentz, A.: Traderbots: a market-based approach for resource, role, and task allocationin multirobot coordination. Robotics Institute, Carnegie Mellon University, Pittsburgh,PA, Tech. Rep. CMU-RI-TR-03-19 (2003)Google Scholar
  15. 15.
    Gerkey, B.P., Matari, M.J.: Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)CrossRefGoogle Scholar
  16. 16.
    Liu, L., Michael, N., Shell, D.: Fully decentralized task swaps with optimized local searching. In: Proceedings of Robotics: Science and Systems (2014)Google Scholar
  17. 17.
    Korsah, G.A., Kannan, B., Browning, B., Stentz, A., Dias, M.B.: xbots: an approach to generating and executing optimal multi-robot plans with cross-schedule dependencies. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 115–122. IEEE (2012)Google Scholar
  18. 18.
    Van Hentenryck, P., Saraswat, V.: Strategic directions in constraint programming. ACM Comput. Sur. (CSUR) 28(4), 701–726 (1996)CrossRefMATHGoogle Scholar
  19. 19.
    Nareyek, A., Freuder, E.C., Fourer, R., Giunchiglia, E., Goldman, R.P., Kautz, H., Rintanen, J., Tate, A.: Constraints and AI planning. IEEE Intell. Syst. 20(2), 62–72 (2005)CrossRefGoogle Scholar
  20. 20.
    Goldman, R.P., Haigh, K.Z., Musliner, D.J., Pelican, M.J.S.: Macbeth: a multi-agent constraint-based planner [autonomous agent tactical planner]. In: Proceedings of the 21st Digital Avionics Systems Conference, vol. 2, p. 7E3-1. IEEE (2002)Google Scholar
  21. 21.
    Doniec, A., Bouraqadi, N., Defoort, M., Le, V.T., Stinckwich, S.: Distributed constraint reasoning applied to multi-robot exploration. In: 21st International Conference on Tools with Artificial Intelligence, ICTAI 2009, pp. 159–166. IEEE (2009)Google Scholar
  22. 22.
    Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)CrossRefGoogle Scholar
  23. 23.
    Vaquero, T., Mohamed, S.C., Nejat, G., Beck, J.C.: The implementation of a planning and scheduling architecture for multiple robots assisting multiple users in a retirement home setting. In: Artificial Intelligence Applied to Assistive Technologies and Smart Environments (AAAI 2015) (2015)Google Scholar
  24. 24.
    Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 148–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)CrossRefGoogle Scholar
  26. 26.
    Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Drexl, M.: Synchronization in vehicle routing-a survey of VRPS with multiple synchronization constraints. Transp. Sci. 46(3), 297–316 (2012)CrossRefGoogle Scholar
  28. 28.
    Louie, W.-Y.G., Li, J., Vaquero, T., Nejat, G.: A focus group study on the design considerations, impressions of a socially assistive robot for long-term care. In: 2014 RO-MAN: The 23rd IEEE International Symposium on Robot, Human Interactive Communication, pp. 237–242. IEEE (2014)Google Scholar
  29. 29.
    Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J. Math. Mod. Algorithms 8(3), 245–270 (2009)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Booth, K.E.C., Tran, T.T., Beck, J.C.: Logic-based decomposition methods for the travelling purchaser problem. In: Quimper, C.-G., Cavallo, M. (eds.) CPAIOR 2016. LNCS, vol. 9676, pp. 55–64. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-33954-2_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kyle E. C. Booth
    • 1
  • Goldie Nejat
    • 1
  • J. Christopher Beck
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations