Systematic Derivation of Bounds and Glue Constraints for Time-Series Constraints

  • Ekaterina ArafailovaEmail author
  • Nicolas Beldiceanu
  • Mats Carlsson
  • Pierre Flener
  • María Andreína Francisco Rodríguez
  • Justin Pearson
  • Helmut Simonis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9892)


Integer time series are often subject to constraints on the aggregation of the integer features of all occurrences of some pattern within the series. For example, the number of inflexions may be constrained, or the sum of the peak maxima, or the minimum of the peak widths. It is currently unknown how to maintain domain consistency efficiently on such constraints. We propose parametric ways of systematically deriving glue constraints, which are a particular kind of implied constraints, as well as aggregation bounds that can be added to the decomposition of time-series constraints [5]. We evaluate the beneficial propagation impact of the derived implied constraints and bounds, both alone and together.


Time Series Absolute Difference Regular Expression Signature Constraint Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007). The FAdo tool is available at MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arafailova, E., Beldiceanu, N., Carlsson, M., Douence, R., Flener, P., Francisco Rodríguez, M.A., Pearson, J., Simonis, H.: Global constraint catalog, volume ii: time-series constraints. Technical report, Computing Research Repository (forthcoming).
  3. 3.
    Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodríguez, M.A., Pearson, J., Simonis, H.: Time-series constraints: improvements and application in CP and MIP contexts. In: Quimper, C.-G., Cavallo, M. (eds.) CPAIOR 2016. LNCS, vol. 9676, pp. 18–34. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-33954-2_2 CrossRefGoogle Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-overlapping rectangles constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377–391. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for describing and synthesising structural time-series constraints. Constraints 21(1), 22–40 (2016). Journal fast track of CP 2015: summary on p. 723 of LNCS 9255, Springer (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beldiceanu, N., Carlsson, M., Flener, P., Rodríguez, M.A.F., Pearson, J.: Linking prefixes and suffixes for constraints encoded using automata with accumulators. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 142–157. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solutions for the EDF unit commitment problem with the ModelSeeker. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Bessiére, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: Reformulating global constraints: the Slide and Regular constraints. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Bessiére, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Decomposition of the NValue constraint. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 114–128. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Francisco Rodríguez, M.A., Flener, P., Pearson, J.: Implied constraints for Automaton constraints. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) GCAI 2015. EasyChair Proceedings in Computing, vol. 36, pp. 113–126 (2015)Google Scholar
  12. 12.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2007)zbMATHGoogle Scholar
  13. 13.
    Monette, J.-N., Flener, P., Pearson, J.: Towards solver-independent propagators. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 544–560. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Hayes-Roth, B., Korf, R.E. (eds.) AAAI 1994, pp. 362–367. AAAI Press (1994)Google Scholar
  15. 15.
    Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and evaluation of the constraint language cc (FD). Technical report CS-93-02, Brown University, Providence, USA, January 1993. Revised version in Journal of Logic Programming 37(1–3), 293–316 (1998). Based on the unpublished manuscript Constraint Processing in cc (FD) (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ekaterina Arafailova
    • 1
    Email author
  • Nicolas Beldiceanu
    • 1
  • Mats Carlsson
    • 2
  • Pierre Flener
    • 3
  • María Andreína Francisco Rodríguez
    • 3
  • Justin Pearson
    • 3
  • Helmut Simonis
    • 4
  1. 1.TASC (CNRS/Inria), Mines NantesNantesFrance
  2. 2.SICSKistaSweden
  3. 3.Department of Information TechnologyUppsala UniversityUppsalaSweden
  4. 4.Insight Centre for Data AnalyticsUniversity College CorkCorkIreland

Personalised recommendations