Information Abstraction from Crises Related Tweets Using Recurrent Neural Network

  • Mehdi Ben Lazreg
  • Morten Goodwin
  • Ole-Christoffer Granmo
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 475)

Abstract

Social media has become an important open communication medium during crises. The information shared about a crisis in social media is massive, complex, informal and heterogeneous, which makes extracting useful information a difficult task. This paper presents a first step towards an approach for information extraction from large Twitter data. In brief, we propose a Recurrent Neural Network based model for text generation able to produce a unique text capturing the general consensus of a large collection of twitter messages. The generated text is able to capture information about different crises from tens of thousand of tweets summarized only in a 2000 characters text.

Keywords

Information abstraction Recurrent neural network Twitter data Crisis management 

References

  1. 1.
    Zielinski, A., Middleton, S.E., Tokarchuk, L.N., Wang, X.: Social media text mining and network analysis for decision support in natural crisis management. In: Proceedings of the ISCRAM. Baden-Baden, Germany (2013)Google Scholar
  2. 2.
    Imran, M., Castillo, C., Diaz, F., Vieweg, S.: Processing social media messages in mass emergency: a survey. ACM Comput. Surv. (CSUR) 47(4), 67 (2015)CrossRefGoogle Scholar
  3. 3.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web (2010)Google Scholar
  4. 4.
    Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)CrossRefGoogle Scholar
  5. 5.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATHGoogle Scholar
  6. 6.
    Mihalcea, R., Tarau, P.: Textrank: bringing order into texts. In: Conference on Empirical Methods in Natural Language Processing (2004)Google Scholar
  7. 7.
    Erkan, G., Radev, D.R.: Lexrank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004)Google Scholar
  8. 8.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  9. 9.
    Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009)CrossRefGoogle Scholar
  10. 10.
    Farahat, M., Halavati, R.: Noise robust speech recognition using deep belief networks. Int. J. Comput. Intell. Appl. 15(1), 1650005 (2016)CrossRefGoogle Scholar
  11. 11.
    Kahou, S., Michalski, V., Konda, K., Memisevic, R., Pal, C.: Recurrent neural networks for emotion recognition in video. In: ICMI 2015 - Proceedings of the 2015 ACM International Conference on Multimodal Interaction (2015)Google Scholar
  12. 12.
    Karpathy, A., Johnson, J., Li, F.F.: Visualizing and understanding recurrent networks. arXiv preprint arXiv:1506.02078 (2015)
  13. 13.
    Yin, J., Lampert, A., Cameron, M., Robinson, B., Power, R.: Using social media to enhance emergency situation awareness. IEEE Intell. Syst. 27(6), 52–59 (2012)CrossRefGoogle Scholar
  14. 14.
    Imran, M., Castillo, C., Lucas, J., Meier, P., Vieweg, S.: Aidr: artificial intelligence for disaster response. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion (2014)Google Scholar
  15. 15.
    Ashktorab, Z., Brown, C., Nandi, M., Culotta, A.: Tweedr: mining twitter to inform disaster response. In: Proceedings of ISCRAM (2014)Google Scholar
  16. 16.
    Musaev, A., Wang, D., Pu, C.: Litmus: landslide detection by integrating multiple sources. In: 11th International Conference Information Systems for Crisis Response and Management (ISCRAM) (2014)Google Scholar
  17. 17.
    Rogstadius, J., Vukovic, M., Teixeira, C., Kostakos, V., Karapanos, E., Laredo, J.A.: Crisistracker: crowdsourced social media curation for disaster awareness. IBM J. Res. Dev. 57(5), 1–13 (2013)CrossRefGoogle Scholar
  18. 18.
    Berlingerio, M., Calabrese, F., Di Lorenzo, G., Dong, X., Gkoufas, Y., Mavroeidis, D.: Safercity: a system for detecting and analyzing incidents from social media. In: 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW). IEEE (2013)Google Scholar
  19. 19.
    Kireyev, K., Palen, L., Anderson, K.: Applications of topics models to analysis of disaster-related twitterdata. In: NIPS Workshop on Applications for Topic Models: Text and Beyond, vol. 1. Whistler, Canada (2009)Google Scholar
  20. 20.
    Graves, A.: Supervised sequence labelling. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks. SCI, vol. 385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. arXiv preprint arXiv:1211.5063 (2012)
  22. 22.
    Olteanu, A., Castillo, C., Diaz, F., Vieweg, S.: Crisislex: a lexicon for collecting and filtering microblogged communications in crises. In: ICWSM (2014)Google Scholar
  23. 23.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATHGoogle Scholar
  24. 24.
    LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–48. Springer, Heidelberg (1998)Google Scholar
  25. 25.
    Fbi, B.: Updates on investigation into multiple explosions in boston. (2013). https://www.fbi.gov/news/updates-on-investigation-into-multiple-explosions-in-boston
  26. 26.
    Gillam, C., MacLaggan, C.: Ammonium nitrate stores exploded at texas plant: state agency (2013). http://www.reuters.com/article/us-usa-explosion-texas-idUSBRE9460Gp.20130507

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Mehdi Ben Lazreg
    • 1
  • Morten Goodwin
    • 1
  • Ole-Christoffer Granmo
    • 1
  1. 1.University of AgderGrimstadNorway

Personalised recommendations