Skip to main content

An Approach to Fractional Programming via D.C. Constraints Problem: Local Search

  • Conference paper
  • First Online:
Discrete Optimization and Operations Research (DOOR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9869))

Abstract

We consider the problem of optimizing the sum of several rational functions via reduction to a problem with d.c. constraints. We propose a method of finding a local solution to the fractional program which can be subsequently used in the global search method based on the global optimality conditions for a problem with nonconvex (d.c.) constraints [2123]. According to the theory, we construct explicit representations of the constraints in the form of differences of two convex functions and perform a local search method that takes into account the structure of the problem in question. This algorithm was verified on a set of low-dimensional test problems taken from literature as well as on randomly generated problems with up to 200 variables and 200 terms in the sum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almogy, Y., Levin, O.: Parametric analysis of a multistage stochastic shipping problem. In: Lawrence, J. (ed.) Operational Research, vol. 69, pp. 359–370. Tavistock Publications, London (1970)

    Google Scholar 

  2. Benson, H.P.: Global optimization algorithm for the nonlinear sum of ratios problem. J. Optim. Theory Appl. 112(1), 1–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bugarin, F., Henrion, D., Lasserre, J.-B.: Minimizing the sum of many rational functions. Math. Prog. Comp. 8, 83–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colantoni, C.S., Manes, R.P., Whinston, A.: Programming, profit rates and pricing decisions. Account. Rev. 13, 467–481 (1969)

    Google Scholar 

  5. Drezner, Z., Schaible, S., Simchi-Levi, D.: Queuing-location problems on the plane. Naval Res. Log. 37, 929–935 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dur, M., Horst, R., Thoai, N.V.: Solving sum-of-ratios fractional programs using efficient points. Optimization 49, 447–466 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Falk, J.E., Palocsay, S.W.: Optimizing the sum of linear fractional functions. In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, Princeton Series in Computer Science, pp. 221–257. Princeton University Press, Stanford (1992)

    Google Scholar 

  8. Frenk, J.B.G., Schaible, S.: Fractional programming. In: Hadjisavvas, S.S.N., Komlosi, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, Series Nonconvex Optimization and Its Applications, vol. 76, pp. 335–386. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Freund, R.W., Jarre, F.: Solving the sum-of-ratios problem by an interior-point method. J. Global Optim. 19(1), 83–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horst, R., Tuy, H.: Global Optimization. Deterministic approaches. Springer-Verlag, Berlin (1993)

    Book  MATH  Google Scholar 

  11. Ibm, I.: High-performance mathematical programming solver for linear programming, mixed integer programming, and quadratic programming. http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

  12. Jong, Y.-Ch.: An efficient global optimization algorithm for nonlinear sum-of-ratios problems. Optim. Online. http://www.optimization-online.org/DB_HTML/2012/08/3586.html

  13. Konno, H.: Watanabe: Bond portfolio optimization problems and their applications to index tracking. J. Oper. Res. Soc. Japan 39, 295–306 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Ma, B., Geng, L., Yin, J., Fan, L.: An effective algorithm for globally solving a class of linear fractional programming problem. J. Softw. 8(1), 118–125 (2013)

    Article  Google Scholar 

  15. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  16. Kuno, T.: A branch-and-bound algorithm for maximizing the sum of several linear ratios. J. Global Optim. 22, 155–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rao, M.R.: Cluster analysis and mathematical programming. J. Amer. Statist. Assoc. 66, 622–626 (1971)

    Article  MATH  Google Scholar 

  18. Raouf, O.A., Hezam, I.M.: Solving fractional programming problems based on swarm intelligence. J. Ind. Eng. Int. 10, 56–66 (2014)

    Article  Google Scholar 

  19. Schaible, S.: Fractional programming. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 495–608. Kluwer Academic Publishers, Dordrecht (1995)

    Chapter  Google Scholar 

  20. Schaible, S., Shi, J.: Fractional programming: the sum-of-ratios case. Optim. Methods Softw. 18, 219–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math. Comput. 255, 73–83 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 465-–502. Springer, New York (2014)

    Chapter  Google Scholar 

  23. Strekalovsky, A.S.: Minimizing sequences in problems with D.C. constraints. Comput. Math. Math. Phys. 45(3), 418–429 (2005)

    MathSciNet  Google Scholar 

  24. Strekalovsky, A.S.: Elements of nonconvex optimization [in Russian]. Nauka, Novosibirsk (2003)

    Google Scholar 

  25. Strekalovsky, A.S., Gruzdeva, T.V.: Local search in problems with nonconvex constraints. Comput. Math. Math. Phys. 47(3), 381–396 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strekalovsky, A.S., Gruzdeva, T.V., Ulianova, N.Y.: Optimization Problems with Nonconvex Constraints [in Russian]. Irk. State University, Irkutsk (2013)

    Google Scholar 

  27. Strekalovsky, A.S., Orlov, A.V.: Bimatrix games and bilinear programming [in Russian]. FizMatLit, Moscow (2007)

    Google Scholar 

  28. Strekalovsky, A.S., Yakovleva, T.V.: On a local and global search involved in nonconvex optimization problems. Autom. Remote Control 65, 375–387 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, W.-Y., Sheu, R.-L., Birbil, I.S.: Solving the sum-of-ratios problem by a stochastic search algorithm. J. Global Optim. 42(1), 91–109 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Russian Science Foundation, Project N 15-11-20015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Gruzdeva or Alexander Strekalovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gruzdeva, T., Strekalovsky, A. (2016). An Approach to Fractional Programming via D.C. Constraints Problem: Local Search. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds) Discrete Optimization and Operations Research. DOOR 2016. Lecture Notes in Computer Science(), vol 9869. Springer, Cham. https://doi.org/10.1007/978-3-319-44914-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44914-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44913-5

  • Online ISBN: 978-3-319-44914-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics