An Agent-Based Simulation Framework to Evaluate Urban Logistics Schemes

  • Wouter van HeeswijkEmail author
  • Martijn Mes
  • Marco Schutten
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


Inefficient urban freight transport has a negative impact on both livability in cities and profit margins in the supply chain. Urban logistics schemes, consisting of governmental policies and company initiatives, attempt to address these problems. However, successful schemes are difficult to realize due to the divergent objectives of the agents involved in urban logistics. Traditional optimization techniques fall short when evaluating schemes, as they do not capture the required change in behavior of autonomous agents. To properly evaluate schemes, we develop an agent-based simulation framework that assesses the interaction between five types of autonomous agents. Compared to existing studies in this field, we contribute by (i) explicitly including company-driven initiatives, and (ii) adopting a supply chain-wide perspective. We illustrate the working of our framework by testing a number of schemes on a virtual network.


Urban logistics Agent-based simulation Logistics schemes 


  1. 1.
    Allen, J., Browne, M., Woodburn, A., Leonardi, J.: The role of urban consolidation centres in sustainable freight transport. Transp. Rev. 32(4), 473–490 (2012)CrossRefGoogle Scholar
  2. 2.
    Anand, N., Quak, H., van Duin, R., Tavasszy, L.: City logistics modeling efforts: trends and gaps - a review. Procedia Soc. Behav. Sci. 39, 101–115 (2012)CrossRefGoogle Scholar
  3. 3.
    Anderson, S., Allen, J., Browne, M.: Urban logistics - how can it meet policy makers sustainability objectives? J. Transp. Geogr. 13(1), 71–81 (2005)CrossRefGoogle Scholar
  4. 4.
    Bektaş, T., Crainic, T.G., Van Woensel, T.: From managing urban freight to smart city logistics networks. CIRRELT 2015–2017 (2015)Google Scholar
  5. 5.
    Benjelloun, A., Crainic, T.G.: Trends, challenges, and perspectives in city logistics. In: Transportation and Land Use Interaction, Proceedings TRANSLU, vol. 8, pp. 269–284 (2008)Google Scholar
  6. 6.
    Boer, E., Otten, M.B.J., Essen, H.: Comparison of various transport modes on a EU scale with the STREAM database. CE Delft (2011)Google Scholar
  7. 7.
    Boerkamps, J., van Binsbergen, A.: Goodtrip - a new approach for modelling and evaluating urban goods distribution. In: Taniguchi, E., R.G., T. (eds.) City Logistics I, pp. 175–186. ARRB Group Limited, Melbourne (1999)Google Scholar
  8. 8.
    Browne, M., Sweet, M., Woodburn, A., Allen, J.: Urban freight consolidation centres. Transport Studies Group 10 (2005)Google Scholar
  9. 9.
    Cattaruzza, D., Absi, N., Feillet, D., González-Feliu, J.: Vehicle routing problems for city logistics. EURO J. Transp. Logistics, 1–29 (2015)Google Scholar
  10. 10.
    Crainic, T.G., Ricciardi, N., Storchi, G.: Models for evaluating and planning city logistics systems. Transp. Sci. 43(4), 432–454 (2009)CrossRefGoogle Scholar
  11. 11.
    Gevaers, R., Van de Voorde, E., Vanelslander, T.: Characteristics and typology of last-mile logistics from an innovation perspective in an urban context. In: Macharis, C., Melo, S. (eds.) City Distribution and Urban Freight Transport: Multiple Perspectives, pp. 56–71. Edward Elger, Cheltenham (2011)Google Scholar
  12. 12.
    Kim, G., Ong, Y.S., Heng, C.K., Tan, P.S., Zhang, N.A.: City vehicle routing problem (city VRP): a review. IEEE Trans. Intell. Transp. Syst. 16(4), 1654–1666 (2015)CrossRefGoogle Scholar
  13. 13.
    Macharis, C., Milan, L., Verlinde, S.: A stakeholder-based multicriteria evaluation framework for city distribution. Res. Transp. Bus. Manage. 11, 75–84 (2014)CrossRefGoogle Scholar
  14. 14.
    Minkoff, A.S.: A Markov decision model and decomposition heuristic for dynamic vehicle dispatching. Oper. Res. 41(1), 77–90 (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  16. 16.
    Quak, H.: Urban freight transport: the challenge of sustainability. In: Macharis, C., Melo, S. (eds.) City Distribution and Urban Freight Transport: Multiple Perspectives, pp. 37–56. Edward Elger, Cheltenham (2011)Google Scholar
  17. 17.
    Roca-Riu, M., Estrada, M., Fernández, E.: An evaluation of urban consolidation centers through continuous analysis with non-equal market share companies. Transp. Res. Procedia 12, 370–382 (2016)CrossRefGoogle Scholar
  18. 18.
    Russo, F., Comi, A.: A classification of city logistics measures and connected impacts. Procedia Soc. Behav. Sci. 2(3), 6355–6365 (2010)CrossRefGoogle Scholar
  19. 19.
    Tamagawa, D., Taniguchi, E., Yamada, T.: Evaluating city logistics measures using a multi-agent model. Procedia Soc. Behav. Sci. 2(3), 6002–6012 (2010)CrossRefGoogle Scholar
  20. 20.
    Taniguchi, E., Thompson, R.G., Yamada, T.: Concepts and visions for urban transport and logistics relating to human security. In: Taniguchi, E., Fwa, T.F., Thompson, R.G. (eds.) Urban Transportation and Logistics: Health, Safety, and Security Concerns, pp. 1–30. CRC Press, Boca Raton (2014)Google Scholar
  21. 21.
    United Nations: Worlds population increasingly urban with more than half living in urban areas (2014). Accessed 22 Mar 2016
  22. 22.
    Van Duin, R.J., van Kolck, A., Anand, N., Taniguchi, E.: Towards an agent-based modelling approach for the evaluation of dynamic usage of urban distribution centres. Procedia Soc. Behav. Sci. 39, 333–348 (2012)CrossRefGoogle Scholar
  23. 23.
    Van Heeswijk, W.J.A., Mes, M.R., Schutten, M.J.: An approximate dynamic programming approach to urban freight distribution with batch arrivals. In: Corman, F., Voß, S., Negenborn, R.R. (eds.) ICCL 2015. LNCS, vol. 9335, pp. 61–75. Springer, Switzerland (2015)CrossRefGoogle Scholar
  24. 24.
    Van Rooijen, T., Quak, H.: Local impacts of a new urban consolidation centre-the case of Binnenstadservice. nl. Procedia Soc. Behav. Sci. 2(3), 5967–5979 (2010)CrossRefGoogle Scholar
  25. 25.
    Wangapisit, O., Taniguchi, E., Teo, J.S., Qureshi, A.G.: Multi-agent systems modelling for evaluating joint delivery systems. Procedia Soc. Behav. Sci. 125, 472–483 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wouter van Heeswijk
    • 1
    Email author
  • Martijn Mes
    • 1
  • Marco Schutten
    • 1
  1. 1.Department of Industrial Engineering and Business Information SystemsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations