Service Network Design of Bike Sharing Systems with Resource Constraints

  • Bruno Albert Neumann-SaavedraEmail author
  • Teodor Gabriel Crainic
  • Bernard Gendron
  • Dirk Christian Mattfeld
  • Michael Römer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


Station-based bike sharing systems provide an inexpensive and flexible supplement to public transportation systems. However, due to spatial and temporal demand variation, stations tend to run full or empty over the course of a day. In order to establish a high service level, that is, a high percentage of users being able to perform their desired trips, it is therefore necessary to redistribute bikes among stations to ensure suitable time-of-day fill levels. As available resources are scarce, the tactical planning level aims to determine efficient master tours periodically executed by redistribution vehicles. We present a service network design formulation for the bike sharing redistribution problem taking into account trip-based user demand and explicitly considering service times for bike pick-up and delivery. We solve the problem using a two-stage MILP-based heuristic and present computational results for small real-world instances. In addition, we evaluate the performance of the master tours for multiple demand scenarios.


Bike sharing systems Bike redistribution Tactical planning Service network design Master tours 



This research has been supported by the German Research Foundation (DFG) through the Research Training Group SocialCars (GRK 1931). The focus of the SocialCars Research Training Group is on significantly improving the city‘s future road traffic, through cooperative approaches. This support is gratefully acknowledged.

Partial funding for this project comes from the Discovery Grant and the Discovery Accelerator Supplements Programs of the Natural Science and Engineering Research Council of Canada, and the Strategic Clusters program of the Fonds québécois de la recherche sur la nature et les technologies. The authors thank the two institutions for supporting this research.


  1. 1.
    DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J. Publ. Transp. 12(4), 3 (2009)CrossRefMathSciNetGoogle Scholar
  2. 2.
    O’Brien, O., Cheshire, J., Batty, M.: Mining bicycle sharing data for generating insights into sustainable transport systems. J. Transp. Geogr. 34, 262–273 (2014)CrossRefGoogle Scholar
  3. 3.
    Vogel, P., Neumann-Saavedra, B.A., Mattfeld, D.C.: A hybrid metaheuristic to solve the resource allocation problem in bike sharing systems. In: Blesa, M.J., Blum, C., Voß, S. (eds.) HM 2014. LNCS, vol. 8457, pp. 16–29. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Büttner, J., Petersen, T.: Optimising Bike Sharing in European Cities-A Handbook. Intelligent Energy Europe, European Commission (2011)Google Scholar
  5. 5.
    Brinkmann, J., Ulmer, M.W., Mattfeld, D.C.: Short-term strategies for stochastic inventory routing in bike sharing systems. Transp. Res. Procedia 10, 364–373 (2015)CrossRefGoogle Scholar
  6. 6.
    Brinkmann, J., Ulmer, M. W., Mattfeld, D.C.: Inventory routing for bike sharing systems. Working Paper, 12 January 2015Google Scholar
  7. 7.
    Laporte, G., Meunier, F., Calvo, R.W.: Shared mobility systems. 4OR 13(4), 341–360 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Coelho, L.C., Cordeau, J.F., Laporte, G.: Thirty years of inventory routing. Transp. Sci. 48(1), 1–19 (2013)CrossRefGoogle Scholar
  9. 9.
    Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system: models and solution approaches. EURO J. Transp. Logistics 2(3), 187–229 (2013)CrossRefGoogle Scholar
  10. 10.
    Rainer-Harbach, M., Papazek, P., Raidl, G.R., Hu, B., Kloimüllner, C.: PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing systems. J. Global Optim. 63(3), 597–629 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dell’Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S.: The bike sharing rebalancing problem: mathematical formulations and benchmark instances. Omega 45, 7–19 (2014)CrossRefGoogle Scholar
  12. 12.
    Contardo, C., Morency, C., Rousseau, L.M.: Balancing a dynamic public bike-sharing system, vol. 4. CIRRELT (2012)Google Scholar
  13. 13.
    Kloimüllner, C., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing systems: an approach for the dynamic case. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 73–84. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Kloimüllner, C., Papazek, P., Hu, B., Raidl, G.R.: A cluster-first route-second approach for balancing bicycle sharing systems. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2015. LNCS, vol. 9520, pp. 439–446. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Neumann-Saavedra, B.A., Vogel, P., Mattfeld, D.C.: Anticipatory service network design of bike sharing systems. Transp. Res. Procedia 10, 355–363 (2015)CrossRefGoogle Scholar
  16. 16.
    Andersen, J., Crainic, T.G., Christiansen, M.: Service network design with asset management: formulations and comparative analyses. Transp. Res. Part C Emerg. Technol. 17(2), 197–207 (2009)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bruno Albert Neumann-Saavedra
    • 1
    Email author
  • Teodor Gabriel Crainic
    • 2
    • 3
  • Bernard Gendron
    • 3
    • 5
  • Dirk Christian Mattfeld
    • 1
  • Michael Römer
    • 4
  1. 1.Decision Support GroupUniversity of BraunschweigBraunschweigGermany
  2. 2.Department of Management and TechnologyUniversité du Québec à MontréalMontréalCanada
  3. 3.Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)Université du Québec à MontréalMontréalCanada
  4. 4.Institute of Business Information Systems and Operations ResearchMartin Luther University, Halle-WittenbergHalle (Saale)Germany
  5. 5.Department of Computer Science and Operations ResearchUniversité de MontréalMontréalCanada

Personalised recommendations