Advertisement

Structural and Optical Studies of Ni/S Co Doped TiO2 Nanorods via Sol-Gel Route

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 189)

Abstract

Nano crystalline TiO2 particles doped with various concentrations of Ni/S were successfully synthesized via sol-gel route using titanium tetra isopropoxide while titanium precursor, Ni (NO3)2.6H2O (nickel source) and CS (NH2)2 (sulfur source). The prepared particles were characterized by standard analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis absorption spectroscopy, scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), and transmission electron microscopy (TEM). The photocatalytic activity of Ni/S-TiO2 is estimated through photocatalytic degradation of Rhodamine B solution under UV irradiation. The XRD data exhibit that the average crystallite size decreases with increase in Ni/S proportions in TiO2 and the crystal structure of TiO2 does not change upon the loading of Ni/S. The particles shape changes from spherical to rod and hence rod-like particles are dominant and lightly stuck together. The spectra of pure TiO2 and doped TiO2 explains emission peak is a blue shift and seen that maximum peak is around 410 nm. This maximum peak shift mainly aspect to increased electron density at oxygen site. In PL spectra emissions observed for all the doped samples are attributed to the oxygen vacancies and Ti vacancies introduced after Ni/S doping. Compared with pure TiO2 nanoparticles, Ni/S doped TiO2 photocatalyst exhibited high photocatalytic activity under ultraviolet (UV) irradiation in the degradation of Rhodamine B aqueous solution. The maximum 97 % of degradation efficiency of Rhodamine B was observed at 3:1 Ni/S-TiO2 within 120 min. The photocatalytic efficiency of Rhodamine B of Ni/S doped TiO2 nanoparticle was higher than that of pure TiO2.

Keywords

Tio2 particles Sol-gel Photocatalyst UV irradiation 

References

  1. 1.
    Yang, G., Yan, Z., Xiao, T., Yang, B.: Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange. J. Alloys Comp. 580, 15–22 (2013)CrossRefGoogle Scholar
  2. 2.
    De la Cruz, N., Dantas, R.F., Gimenez, J., Esplugas, S.: Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light. Appl. Catal. B: Environ. 130–131, 249–256 (2013)CrossRefGoogle Scholar
  3. 3.
    Fittipaldi, M., Gatteschi, D., Fornasiero, P.: The power of EPR techniques in revealing active sites in heterogeneous photocatalysis: the case of anion doped TiO2. Catal. Today 206, 2–11 (2013)CrossRefGoogle Scholar
  4. 4.
    Kamegawa, T., Sonoda, J., Sugimura, K., Mori, K., Yamashita, H.: Degradation of isobutanol diluted in water over visible light sensitive vanadium doped TiO2 photocatalyst. J. Alloys Comp. 486, 685–688 (2009)CrossRefGoogle Scholar
  5. 5.
    Moon, H.G., Jang, H.W., Kim, J.S., Park, H.H., Yoon, S.J.: A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization. Sens. Actuat. B 153, 37–43 (2011)CrossRefGoogle Scholar
  6. 6.
    Lee, J., Kim, D.H., Hong, S.H., Jho, J.Y.: A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method Sens. Actuat. B 160, 1494–1498 (2011)CrossRefGoogle Scholar
  7. 7.
    Gratzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Shalan, A.E., Rashad, M.M., Yu, Y., Lira-Cantu, M., Abdel-Mottaleb, M.S.A.: Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells Electrochim. Acta 89, 469–478 (2013)Google Scholar
  9. 9.
    Kim, J.H., Zhu, K., Kim, J.Y., Frank, A.J.: Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics Electrochim. Acta 88, 123–128 (2013)Google Scholar
  10. 10.
    Dhandapani, P., Maruthamuthu, S., Rajagopal, G.: Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J. Photochem. Photobiol. B: Biol. 110, 43–49 (2012)CrossRefGoogle Scholar
  11. 11.
    Song, K., Han, X., Shao, G.: Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study. J. Alloys Comp. 551, 118–124 (2013)CrossRefGoogle Scholar
  12. 12.
    Fujishima, A., Zhang, X.T.: Titanium dioxide photocatalysis: present situationand future approaches. C. R. Chim. 9, 750–760 (2006)CrossRefGoogle Scholar
  13. 13.
    Hoffmann, M.R., Martin, S.T., Choi, W., Detlef, W.B.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  14. 14.
    Zaleska. A.: Doped-TiO2. A review, Recent Patents Eng. 2, 157–164 (2008)Google Scholar
  15. 15.
    Kavan, L., Gratzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J.: Electrochemical and photoelectrochemical investigation of single crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996)CrossRefGoogle Scholar
  16. 16.
    Li, W., Zeng, T.: Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4. PLoS ONE 6, e21082 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Mir, N., Salavati-Niasari, M.: Photovoltaic properties of corresponding dye sensitized solar cells: effect of active sites of growth controller on TiO2 nanostructures. Sol. Energy 86, 3397–3404 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Yu, J.C., Ho, W.K., Yu, J.G., Yip, H.Y., Wong, P.K., Zhao, J.C.: Efficient visible-light induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 39, 1175–1179 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Ho, W.K., Yu, J.C., Lee, S.C.: Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 10, 1115–1117 (2006)CrossRefGoogle Scholar
  20. 20.
    Sun, H.Q., Wang, S., Ang, H.M., Tadé, M.O., Li, Q.: Halogen element modified titanium dioxide for visible light photocatalysis. Chem. Eng. J. 162, 437–447 (2010)CrossRefGoogle Scholar
  21. 21.
    Liu, G., Chen, Z.G., Dong, C.L., Zhao, Y.N., Li, F., Lu, G.Q., Cheng, H.M.: Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. J. Phys. Chem. B 110, 20823–20828 (2006)CrossRefGoogle Scholar
  22. 22.
    Hong, X.T., Wang, Z.P., Cai, W.M., Lu, F., Zhang, J., Yang, Y.Z., Ma, N., Liu, Y.J.: Visiblelight- activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater. 17, 1548–1552 (2005)CrossRefGoogle Scholar
  23. 23.
    Usseglio, S., Damin, A., Scarano, D., Bordiga, S., Zecchina, A., Lamberti, C.: (I2)n encapsulation inside TiO2: a way to tune photoactivity in the visible region. J. Am. Chem. Soc. 129, 2822–2828 (2007)CrossRefGoogle Scholar
  24. 24.
    Wu, J.C.S., Chen, C.H.: A visible-light response vanadium-doped titania nanocatalyst by sol–gel method. J. Photochem. Photobiol. A: Chem. 163, 509–515 (2004)CrossRefGoogle Scholar
  25. 25.
    Choi, W., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. B 98(51), 13669–13679 (1994)CrossRefGoogle Scholar
  26. 26.
    Ohno, T., Tsubota, T., Nakamura, Y., Sayama, K.: Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Appl. Catal. A: Gen. 288, 74–79 (2005)CrossRefGoogle Scholar
  27. 27.
    Lin, L., Zheng, R.Y., Xie, J.L., Zhu, Y.X., Xie, Y.C.: Synthesis and characterization of phosphor and nitrogen co-doped titania. Appl. Catal. B: Environ. 76, 196–202 (2007)CrossRefGoogle Scholar
  28. 28.
    Li, X., Xiong, R., Wei, G.: S-N Co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method. Catal. Lett. 125, 104–109 (2008)CrossRefGoogle Scholar
  29. 29.
    Hamal, D.B., Klabunde, K.J.: Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interf. Sci. 311, 514–522 (2007)CrossRefGoogle Scholar
  30. 30.
    Obata, K., Irie, H.K.: Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light Chem. Phys. 339, 124–132 (2007)Google Scholar
  31. 31.
    Pingxiao, W., Jianwen, T., Zhi, D.: Preparation and photocatalysis of TiO2 nanoparticles doped with nitrogen and cadmium. Mater. Chem. Phys. 103, 264–269 (2007)CrossRefGoogle Scholar
  32. 32.
    Zhang, D.R., Kim, Y.H., Kang, Y.S.: Preparation and photocatalysis of TiO2 nanoparticles doped with nitrogen and cadmium. J. Curr. Appl. Phys. 6, 801–804 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Gomathi Devi, L., Kavitha, B., Nagaraj.: Bulk and surface modification of TiO2 with sulphur and silver: Synergetic effects of dual surface modification in the enhancement of photocatalytic activity. Mater. Sci. Semicond. Process. 40832–8392 (2015)Google Scholar
  34. 34.
    Hamadanian, M., Reisi-Vanani, A., Majedi, A.: A.: Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu, S-codoped TiO2 nanoparticles. Appl. Surf. Sci. 256, 1837–1844 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Liu, Yanhua, Wang, Zilong, Fan, Weibo, Geng, Zhongrong, Fengn, Libang: Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight. Ceram. Int. 40, 3887–3893 (2014)CrossRefGoogle Scholar
  36. 36.
    Xu, G.Q., Zheng, Z.X., Wu, Y.C.: Feng. N. Effect of silica on the microstructure and photocatalytic properties of titania. Ceram. Int. 35, 1–5 (2009)CrossRefGoogle Scholar
  37. 37.
    Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K.G.K.: Sol–gel synthesis of nanosized anatase from titanyl sulfate. Mater. Lett. 57, 330–335 (2002)CrossRefGoogle Scholar
  38. 38.
    Parida, K.M., Sahu, N., Biswal, N.R., Naik, B., Pradhan, A.C.: Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. J. Colloid Interface Sci. 318, 231–237 (2008)CrossRefGoogle Scholar
  39. 39.
    Ibram Ganesh, A.K., Gupta, P.P., Kumar, P.S.C., Sekhar, K., Radha, G., Sundararajan, G.: Preparation and characterization of Ni-Doped TiO2 materials for photocurrent and photocatalytic applications. Sci. World J. 1–16 (2012)Google Scholar
  40. 40.
    Begum, N.S., Ahmed, H.M.F., Gunashekar, K.R.: Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Bull. Mater. Sci. 31, 747–751 (2008)CrossRefGoogle Scholar
  41. 41.
    Zeng, P., Zhang, X., Zhang, X., Chai, B., Peng, T.: Efficient photocatalytic hydrogen production over Ni@C/TiO2 nanocomposite under visible light irradiation. Chem. Phys. Lett. 503, 262–265 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Dai, K., Peng, T.Y., Ke, D.N., Wei, B.Q.: Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 20, 125603 (2009)Google Scholar
  43. 43.
    Sasikala, R., Sudarsan, V., Sudakar, C., Naik, R., Panicker, L., Bharadwaj, S.R.: Modification of the photocatalytic properties of self doped TiO2 nanoparticles for hydrogen generation using sunlight type radiation. Int. J. Hydrogen Energy 34, 6105–6113 (2009)CrossRefGoogle Scholar
  44. 44.
    Madhukumar, P., Badrinarayan, S., Sastry, M.: Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358, 122–130 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of PhysicsPeriyar UniversitySalemIndia
  2. 2.Department of Physics, Wing DDEAnnamalai UniversityChidambaramIndia
  3. 3.Department of PhysicsAnnamalai UniversityChidambaramIndia

Personalised recommendations