Preparation and Characterization of Porous Hollow Sphere of Ni Doped CuS Nanostructures for Electrochemical Supercapacitor Electrode Material

  • Surekha Podili
  • D. Geetha
  • P. S. Ramesh
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 189)


Porous metal sulfide nanostructures are promising materials for developing high performance electrochemical devices. Herein, Porous hollow nano structures of Ni doped CuS were successfully synthesized by hydrothermal method with surfactant (CTAB) as stabilizer and ethylene glycol as solvent. Prepared samples were systematically characterized by X-ray diffraction, UV-Vis spectrometry, Fourier transform infrared spectroscopy (FTIR), SEM/EDS, Thermal analysis (TG/DTA) and Atomic force microscopy (AFM). The size of Ni doped CuS morphologies was about 5–10 nm corresponding to the Ni doping concentrations of 0.05, 0.1–0.6 mM respectively. The characterization revealed the presence of CuS (Covellite). The supercapacitor performance of this nanostructure was characterized by cyclic voltammetry in 2 M KOH as electrolyte. The porous hollow nano Ni doped CuS exhibit higher specific capacitance (400 Fg−1 at 5 mV/s), which was higher than that of common CuS nano structures (287 Fg−1 at 5 mV/s). The enhanced performance is mainly due to the pore in the Ni doped CuS nanostructures.


Ni doped cus Porous hallow nanostructure Supercapacitor 



The authors appreciatively thanks to the financial support afford by University grants commission (UGC), India, (No. F.No- 43-533/2014 (SR).


  1. 1.
    Krishnamoorthy, K., Kim, S.-J.: Preparation of CuO nanostructures coating on copper as supercapacitor materials. Mater. Res. Bull. 48, 3136 (2013)CrossRefGoogle Scholar
  2. 2.
    Boukhalfa, S., Evanoff, K., Yushin, G.: Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor. Energy Environ. Sci. 5, 6872 (2012)CrossRefGoogle Scholar
  3. 3.
    Gao, M.-R., Xu, Y.-F., Jiang, J., Yu, S.H.: Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986 (2013)CrossRefGoogle Scholar
  4. 4.
    Du, X.S., Yu, Z.Z., Dasari, A., Ma, J., Meng, Y.Z., Mai, Y.W.: Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures. Chem. Mater. 18, 5156–5158 (2006)CrossRefGoogle Scholar
  5. 5.
    Feng, X.P., Li, Y.X., Liu, H.B., Li, Y.L., Cui, S., Wang, N., Jiang, L., Liu, X.F.: Yuan, controlled growth and field emission properties of CuS nanowalls. J. Nanotechnol. 18, 145706 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Xu, J., Cui, X.J., Zhang, J.H., Liang, H.W., Wang, H.Y., Li, J.F.: Preparation of CuS nano particle embedded in poly vinyl alcohol nano fibre via electro spinning. Bull. Mater. Sci. 31, 189–192 (2008)CrossRefGoogle Scholar
  7. 7.
    Zhang, H.T., Wu, G., Chen, X.H.: Controlled synthesis and optical properties of covellite (CuS) nanoflakes. Mater. Chem. 98, 298 (2006)Google Scholar
  8. 8.
    Suja, R., Geetha, D., Ramesh, P.S.: Preparation and characterization of CuS nanomaterials by solvothermal method. Int. J. Sci. Eng. Res. 4(3), 1–3 (2013)Google Scholar
  9. 9.
    Yang, C., Fan, H., Xi, Y., Chen, J., Li, Z.: Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl. Surf. Sci. 254, 2685–2689 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Farrag, M., Thamer, M., Tschurl, M., Burgi, T., Hei, Zu: Preparation and spectroscopic properties of monolayer-protected silver nanoclusters. J. Phys. Chem. C 116(14), 8034–8043 (2012)CrossRefGoogle Scholar
  11. 11.
    Nezamzadeh-Ejhieh, A., Moazzeni, N.: Sunlight photodecolorization of a mixture of methyl orange and bromocresol green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. J. Indust. Eng. Chem. 19(5), 1433–1442 (2013)CrossRefGoogle Scholar
  12. 12.
    Kalanur, S.S., Chae,S.Y., Joo, S.S.: Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrachimica Acta 103, 91 (2013)Google Scholar
  13. 13.
    Wei, H., Yi, L., Zhao, N., Tang, A., Gao, M., Tang, Z.: Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. J. Am. Chem. Soc. 130, 13152–13161 (2008)CrossRefGoogle Scholar
  14. 14.
    Pabalan, R.T., Bertetti, F.P.: Cation-exchange properties of natural zeolites. Rev. Mineral. Geochem. 45, 453–518 (2001)CrossRefGoogle Scholar
  15. 15.
    Li, X., Xiong, S., Li, J., Bai, J., Qian, Y.: Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni (OH)2 hierarchical microspheres and their superior electrochemical capacitance. J. Mater. Chem. 22, 14276 (2012)CrossRefGoogle Scholar
  16. 16.
    Zhong, J.H., Wang, A.L., Li, G.R., Wang, J.W., Ou, Y.N., Tong, Y.X.: Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22, 5656 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of PhysicsAnnamalai UniversityChidambaramIndia
  2. 2.Department of Physics (DDE Wings)Annamalai UniversityChidambaramIndia

Personalised recommendations