# The Influence of Epistemic Views About the Relationship Between Physics and Mathematics in Understanding Physics Concepts and Problem Solving

## Abstract

From all the difficulties students have while trying to understand physics , the ones with mathematics are of the more remarkable, at least for physics teachers. Although the problem is explicit, its solution becomes complex due to the lack of clarity about the characteristics of the relationship between maths and physics. If for the teacher these relationships are unclear, it is probable that their students will not realize their character and assume a naive attitude, believing that knowing the equation and how to resolve it will result in success in solving physics problems, forgetting the conceptual part. We investigated how these relationships were perceived by two consecutive groups of undergraduate students in a physics degree that educate high school physics teachers and how this way of understanding is reflected in their conceptual learning and their attitudes when they are asked to resolve problems of thermodynamics. We will discuss how their perceptions would influence their teaching in middle school.

## References

- Ataíde, R. P., & Greca, I. M. (2013). Estudo exploratório sobre as relações entre conhecimento conceitual, domínio de técnicas matemáticas e resolução de problemas em estudantes de licenciatura em Física.
*Revista Electrónica de Enseñanza de las Ciencias,**12*, 209–233.Google Scholar - Feynman, R. P. (1989).
*O que é uma lei física?*. Lisboa: Editora Gradiva.Google Scholar - Greca, I. M., & Moreira, M. A. (2001). Mental models, physical models and mathematical models in the teaching and learning of physics.
*Science Education,**86*, 106–121.ADSCrossRefGoogle Scholar - Karam, R. A. S. (2007). Matemática como estruturante e física como motivação: uma análise de concepções sobre as relações entre matemática e física.
*Proceedings VI Encontro Nacional de Pesquisa em Educação em Ciências.*Google Scholar - Paty, M. (1995).
*A materia roubada*. São Paulo: Edusp.Google Scholar - Paty, M. (2001). La notion de grandeur et la légitimité de la mathématisation en physique. In Miguel Espinoza (Ed.),
*De la science à la philosophie: Hommage à Jean Largeault*(pp. 247–286). Paris: L’Harmattan.Google Scholar - Pietrocola, M. (2002). A Matemática Como Estruturante Do Conhecimento Físico.
*Caderno Brasileiro De Ensino De Física,**19*, 88–108.Google Scholar - Pietrocola, M. (2010). Mathematics structural language of physics thought. In M. Vicentini & E. Sassi (Eds.),
*Connecting research in physics education with teacher education*(2nd ed., Vol. 2, pp. 35–48). New Delhi: Angus & Grapher Publishers.Google Scholar