Skip to main content

Mach Number Influence on Ignition and Mixing Processes in a Reacting Shock–Bubble Interaction

  • Conference paper
  • First Online:
30th International Symposium on Shock Waves 2

Abstract

We present numerical simulations of a reacting shock–bubble interaction with detailed chemistry. The interaction between the Richtmyer-Meshkov instability and shock-induced ignition of a \( {\mathrm{H}}_2-{\mathrm{O}}_2 \) gas mixture is investigated. Shock wave Mach numbers in the range of \( Ma=2.13-2.50 \) at a constant initial pressure of \( {p}_0=0.50 \) atm trigger different reaction wave types. Deflagration is induced by a shock wave Mach number of \( Ma=2.13 \) and detonation by \( Ma=2.50 \). The spatial expansion of the bubble, the Richtmyer-Meshkov instability, and the subsequent Kelvin Helmholtz instabilities develop with a high reaction wave sensitivity. Mixing is significantly decreased by both reaction waves types, with detonation waves resulting in the strongest damping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, J., Kubota, T., Zukoski, E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (1993)

    Article  Google Scholar 

  2. Marble, F., Zukoski, E., Jacobs, J., Hendricks, G., Waitz, I.: Shock enhancement and control of hypersonic mixing and combustion. In: AIAA 26th Joint Propulsion Conference, Orlando (1990)

    Google Scholar 

  3. Brouillette, M.: The Richtmyer-Meshkov instabilty. Annu. Rev. Fluid Mech. 34, 445–468 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ranjan, D., Oakley, J., Bonazza, R.: Shock-bubble interactions. Annu. Rev. Fluid Mech. 43(1), 117–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Haehn, N., Ranjan, D., Weber, C., Oakley, J., Rothamer, D., Bonazza, R.: Reacting shock bubble interaction. Combust. Flame 159(3), 1339–1350 (2012)

    Article  Google Scholar 

  6. O’Conaire, M., Curran, H., Simm ie, J., Pitz, W., Westbrook, C.: A comprehensive modeling study of Hydrogen oxidation. Int. J. Chem. Kinet. 36, 603–622 (2004)

    Google Scholar 

  7. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, X.Y., Tritschler, V.K., Pirozzoli, S., Adams, N.A.: Dispersion-dissipation condition for finite difference schemes. ArXiv e-prints (2012)

    Google Scholar 

  9. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Oran, E., Boris, J.: Numerical simulation of reactive flow. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  12. Youngs, D.: Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Laser Part Beam 12, 725–750 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Diegelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Diegelmann, F., Tritschler, V., Hickel, S. (2017). Mach Number Influence on Ignition and Mixing Processes in a Reacting Shock–Bubble Interaction. In: Ben-Dor, G., Sadot, O., Igra, O. (eds) 30th International Symposium on Shock Waves 2. Springer, Cham. https://doi.org/10.1007/978-3-319-44866-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44866-4_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44864-0

  • Online ISBN: 978-3-319-44866-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics