Skip to main content

The Properties of Nontrivial Basic Sets of A-Diffeomorphisms Related to Type and Dimension

  • Chapter
  • First Online:
Dynamical Systems on 2- and 3-Manifolds

Part of the book series: Developments in Mathematics ((DEVM,volume 46))

  • 1161 Accesses

Abstract

In this chapter we study orientation preserving A-diffeomorphisms on an orientable compact manifold \(M^n\) (possibly with boundary) with a nontrivial basic set \(\varLambda \) in the interior of \(M^n\). We state some important properties of the basic sets in relation to their type and dimension. These properties are used for the topological classification of the basic sets (including expanding attractors and contracting repellers) as well as for important classes of structurally stable diffeomorphisms. We present the constructions of classical A-diffeomorphisms with basic sets of codimension one: the DA-diffeomorphism, the diffeomorphism with the Plykin attractor, the diffeomorphism with the Smale “horseshoe”, the diffeomorphism with the Smale-Williams solenoid. The results of this chapter are based on [14, 7, 10, 1320].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a hypothesis that the periodic trajectories of every Anosov diffeomorphism are dense in the ambient manifold and therefore the ambient manifold is its only basic set. From [6, 7, 1214] it follows that this is true for all known Anosov diffeomorphisms. But J. Franks and R. Williams in [8] constructed a class of Anosov flows for which the non-wandering set does not coincide with the ambient manifold.

  2. 2.

    The given descriptions of these diffeomorphisms are not complete. Detailed explanations could be found, for example, in [5, 11, 19, 20].

References

  1. Anosov, D.: Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math., vol. 90. MAIK Nauka/Interperiodica, Pleiades Publishing, Moscow; Springer, Heidelberg (1967)

    Google Scholar 

  2. Anosov, D.: About one class of invariant sets of smooth dynamical systems. Proc. Int. Conf. on Non-linear Oscil. 2, 39–45 (1970)

    Google Scholar 

  3. Aranson, S., Grines, V.: The topological classification of cascades on closed two-dimensional manifolds. Russ. Math. Surv. 45(1), 1–35 (1990). doi:10.1070/RM1990v045n01ABEH002322

    Article  MathSciNet  MATH  Google Scholar 

  4. Aranson, S., Grines, V.: Dynamical systems with hyperbolic behavior. In: Itogi Nauki Tekhniki; Sovremennye Problemy Matematiki, Fundamental’nye Napravleniya, Dynamical Systems 9, VINITI, Akad. Nauk SSSR, Vol. 66, Moscow, (1991), p.148–187 (Russian), English translation in Encyclopaedia of Mathematical Sciences, Dynamical Systems IX, pp. 141–175. Springer-Verlag-Berlin-Heidelberg (1995)

    Google Scholar 

  5. Brin, M., Stuck, G.: Introduction to Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  6. Farrell, F.T., Jones, L.: Anosov diffeomorphisms constructed from \(\pi _1 Diff(S^n)\). Topology 17(3), 273–282 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Franks, J.: Anosov diffeomorphisms. Proc. Symp. Pure Math. 14, 61–94 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Franks, J., Williams, B.: Anomalous Anosov flows. In: Global theory of dynamical systems, pp. 158–174. Springer (1980)

    Google Scholar 

  9. Gibbons, J.C.: One-dimensional basic sets in the three-sphere. Trans. Am. Math. Soc. 164, 163–178 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grines, V.: The topological conjugacy of diffeomorphisms of a two-dimensional manifold on one-dimensional orientable basic sets. I. Tr. Mosk. Mat. O.-va 32, 35–60 (1975)

    MathSciNet  Google Scholar 

  11. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  12. Ku, Y.H., Hyun, J.K., John, B.L.: Eventually periodic points of infra-nil endomorphisms. Fixed Point Theory Appl. 2010 (2010)

    Google Scholar 

  13. Manning, A.: There are no new Anosov diffeomorphisms on tori. Am. J. Math. 96, 422–429 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Newhouse, S.E.: On codimension one Anosov diffeomorphisms. Am. J. Math. 92(3), 761–770 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Plykin, R.: The topology of basis sets for Smale diffeomorphisms. Mathematics of the USSR, Sbornik 13, 297–307 (1971). doi:10.1070/SM1971v013n02ABEH001026

    Article  MATH  Google Scholar 

  16. Plykin, R.: Sources and sinks of A-diffeomorphisms of surfaces. Mathematics of the USSR, Sbornik 23, 233–253 (1975). doi:10.1070/SM1974v023n02ABEH001719

    Article  MATH  Google Scholar 

  17. Plykin, R.: Hyperbolic attractors of diffeomorphisms. Russ. Math. Surv. 35(3), 109–121 (1980). doi:10.1070/RM1980v035n03ABEH001702

    Article  MathSciNet  MATH  Google Scholar 

  18. Plykin, R.: On the geometry of hyperbolic attractors of smooth cascades. Russ. Math. Sur. 39(6), 85–131 (1984). doi:10.1070/RM1984v039n06ABEH003182

    Article  MathSciNet  MATH  Google Scholar 

  19. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, vol. 28. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  20. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73(6), 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vietoris, L.: Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97(1), 454–472 (1927)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viacheslav Z. Grines .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grines, V.Z., Medvedev, T.V., Pochinka, O.V. (2016). The Properties of Nontrivial Basic Sets of A-Diffeomorphisms Related to Type and Dimension. In: Dynamical Systems on 2- and 3-Manifolds. Developments in Mathematics, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-44847-3_8

Download citation

Publish with us

Policies and ethics