Joint Compositional Calibration: An Example for U–Pb Geochronology

  • R. Tolosana-Delgado
  • K. G. van den Boogaart
  • E. Fišerová
  • K. Hron
  • I. Dunkl
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 187)


This contribution explores several issues arising in the measurement of a (geo)chemical composition with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), specially in the case that the quantities of interest are linear functions of (log)-ratios. These quantities are scale invariant, but in general cannot be estimated without taking into account possible additive noise effects of the instrumentation, incompatible with a purely compositional approach. The proposed ways to a solution heavily build upon the multi-Poisson distribution, highlighting the counting nature of the readings delivered by these instruments. The model can be fitted using a generalized linear model formalism, and it allows for a joint calibration of all components at once. Relevance of these considerations is shown with some simulation studies and in a real case of multi-isotopic geochronological analyses. Results suggest that the most critical aspect of this analytical technique is the assumption that the amount of ablated mass per second between samples of unknown and known compositions is similar (matrix matching): if this cannot be ensured, absolute estimations of the abundance of each of these isotopes fails, while their (log)ratios are perfectly estimable. This opens the door to using the model for a joint calibration by loosening the condition of matrix matching and using several standards of different composition.


Poisson regression GLM Count composition Multi-element calibration Concordia plot apologies for the delay 


  1. 1.
    Aitchison, J.: The Statistical Analysis of Compositional Data (Reprinted in 2003 by The Blackburn Press), p. 416. Chapman & Hall Ltd., London (UK) (1986)Google Scholar
  2. 2.
    Cheatham, M.M., Sangrey, W.F., White, W.M.: Sources of error in external calibration ICP-MS analysis of geological samples and an improved non-linear drift correction procedure. Spectrochim. Acta 48B(3), E467–E506 (1993)Google Scholar
  3. 3.
    Donevska, S., Fišerová, E., Hron, K.: Calibration of compositional measurements. In: Communications in Statistics—Theory and Methods, accepted (2016). doi:10.1080/03610926.2013.839039
  4. 4.
    Jackson, S., Pearson, N., Griffin, W., Belousova, E.: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004)CrossRefGoogle Scholar
  5. 5.
    Nelder, J., Wedderburn, R.: Generalized linear models. J. R. Stat. Soc. Ser. A 135(3), 370–384 (1972)CrossRefGoogle Scholar
  6. 6.
    Pawlowsky-Glahn, V., Egozcue, J.J.: Geometric approach to statistical analysis on the simplex. Stochast. Environ. Res. Risk Asses. 15(5), 384–398 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Pawlowsky-Glahn, V., Egozcue, J.J., Tolosana-Delgado, R.: Modelling and Analysis of Compositional Data. Wiley, Chichester (2015)CrossRefGoogle Scholar
  8. 8.
    Skellam, J.G.: The frequency distribution of the difference between two Poisson variates belonging to different populations. J. R. Stat. Soc. Ser. A 109(3), 296 (1946)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sylvester, P.J.: Matrix effects in laser ablation-ICP-MS. In: Sylvester, P.J. (ed.) Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, pp. 67–78. Mineralogical Association of Canada, Short Course 40 (2008)Google Scholar
  10. 10.
    van den Boogaart, K.G., Tolosana-Delgado, R., Hron, K., Templ, M., Filzmoser, P.: Compositional Regression with unobserved components or below detection limit values. In: CoDaWork’13, 5th international workshop on Compositional Data Analysis, held on 4–7 June 2013, Vorau (Austria)Google Scholar
  11. 11.
    van den Boogaart, K.G., Tolosana-Delgado, R.: Analyzing compositional data with R. UseR series, 258p. Springer, Hiedelberg (Germany) (2013)Google Scholar
  12. 12.
    van den Boogaart, K.G., Tolosana-Delgado, R.: “Compositions”: a unified R package to analyze compositional data. Comput. Geosci. 34(4), 320–338 (2008)CrossRefGoogle Scholar
  13. 13.
    van den Boogaart, K.G., Tolosana-Delgado, R., Templ, M., Filzmoser, P.: Regression with compositional response having unobserved components or below detection limit values. Stat. Model 15(2), 191–213 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wetherhill, G.: Discordant uranium-lead ages, I, transactions. J. Am. Geophys. Union 37, 320–326 (1953)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • R. Tolosana-Delgado
    • 1
  • K. G. van den Boogaart
    • 1
  • E. Fišerová
    • 2
  • K. Hron
    • 2
  • I. Dunkl
    • 3
  1. 1.Helmholtz Zentrum Dresden-RossendorfHelmholtz Institute Freiberg for Resource TechnologyFreibergGermany
  2. 2.Department of Mathematical Analysis and Applications of MathematicsPalacky UniversityOlomoucCzech Republic
  3. 3.Department of Sedimentology and Environmental GeologyGeorg August UniversityGoettingenGermany

Personalised recommendations